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August 24

1.1 Measure Theory Basics

Given a set X, a measure p maps subsets A C X to [0, 00].

Example 1.1. If X is countable (e.g. X = Z), the counting measure #(A) equals the number of
points in A.

Example 1.2. If ¥ = R", the Lebesgue measure is A\(4) = [ --- [, dz; - - dz, = Vol(A).

Because of pathological sets, A(A) is only defined for some subsets A C R™. This leads to the idea of a
o-field (o-algebra).

A o-field F is a collection of sets on which p is defined, satisfying certain closure properties.

Example 1.3. If X is countable, F = 2% (all subsets).

Example 1.4. If X = R"”, then F is the Borel o-field, 55, the smallest o-field containing all rectangles.

Given (X, F) (a measurable space), a measure is any map p : F — [0, 00] with p(lJ;2; 4i) = Y oeq #(Ai)
it A; € F are disjoint. If u(X) =1 (usually P), then 4 is a probability measure.

Measures let us define integrals, [ f(z)du(z) or [ fdp, that put weight u(A) on A.
Counting: [ f(x)d#(x) =3 cx f2).
Lebesque: [ f(z)d\(z) = [+ [ f(z)dzy -+ day,.

1.1.1 Densities

Given (X, F) and two measures pu, P, we say that P is absolutely continuous with respect to u if
P(A) = 0 whenever p(A) = 0 (if p is the Lebesgue measure, we just say that P is absolutely continuous).
Notate this as P < u.

If P < p, then we can define a density function

P:@
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with P(4) = [, p(z) du(x). Recall that P(A) = [, dP(z). Also, [ f(z)dP(x) = [ f(z)p(x)du(z).

Let P be a probability measure. If u = #, then p is a probability mass function. If y = A, then p is a
probability density function.

If dP = pdA, then P(A) = [, dP(z) = [, p(x) dz. If we redefine p at a single point, then we obtain another

density, so density functions are not unique, but any two densities agree almost everywhere, so the distinction
is not important.

1.1.2 Random Variables

Let (92, F,P) be a probability space. w € Q is called an outcome. A € F is called an event. P(A) is
called the probability of A.

A random variable (vector) is a function X : @ — R (R™). We say that X has distribution @ (X ~ Q)
ifP(X € B) =P{w: X(w) € B}) =Q(B) for B € B.

An expectation is an integral with respect to P. E[X] = [, X (w) dP(w) = [ -+ [, 2dQ(x).

1.2 Risk & Estimation

A statistical model is a family of candidate probability distributions. P = {Py : § € O} for some observed
data X ~ Py. 6 is called the parameter.

Goal of Estimation: Observe X ~ Py and guess the value of ¢g(#) (estimand).

Example 1.5. Flip a biased coin n times. 6 is the probability of landing heads and X is the number
of heads after n flips. © = [0,1]. X ~ Binomial(n, ), with py(z) = 6%(1 — 8)"~*(}) for = € {0,...,n}.

A statistic is any function T'(X) of data X. An estimator 6(X) of ¢g(f) is any statistic meant to guess g(6).
In the example, a natural estimator is do(X) = X/n. Is this a good estimator?

A loss function L(6,d) measures the “badness” of the guess.

Example 1.6. L(6,d) = (d — g(0))? is the squared error.
Typical properties:
o L(0,d) >0 for all 0, d.
o L(0,9(8)) =0 for all 4.
The risk function is R(6,4(-)) = Eo[L(0,d(X))].

Example 1.7. If L(0,d) = (d — ¢(6))?, then R(6,8) = E¢[(8(X) — ¢(8))?] (the MSE).
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2.1 Review

2.1.1 Basic Measure Theory

A measure space is

(X, F,, n )

set  o-field measure

dP
where u(A) € [0,00] for A € F is the “weight” on A. If P < p, then a density p <d/1> is a function such
that P(A) = [,dP(z) = [, p(z)du(x) and [ fdP = [ fpdpu.

2.1.2 Statistical Model
P={P:0€c0O)

Estimation: We have

e an estimand, g();

e an estimator, §(X);
loss L(6,d), e.g. (9(0) — d)?
risk, R(6,6) = Eo[L(0,5(X))].

2.2 Comparing the Risk of Different Estimators

Example 2.1. X ~ Binomial(n, ), so pg(z) = 6°(1 — )"~ ("). An estimator for 8 is §o(X) = X/n.
The expectation of the estimator is Eg[X/n] = 6 (it is unbiased). So, R(6,d) = varg(X/n) = 6(1—0)/n.

Other choices:

X+3
01(X) = —
X+3
%2(X) = n+6"

R(6,0,) is always greater than R(6,dy) because d; has the same variance as dg, but more bias. R(6, d2)
is smaller than R(6, o) when 6 is close to 1/2.



LECTURE 2. AUGUST 29 8

01 is definitely bad, but the comparison between &y and J5 is more ambiguous.

An estimator § is inadmissible if there exists 6* such that
(a) R(6,0*) < R(0,6) V0 € O,
(b) R(6,6*) < R(6,0) for some 6 € O.
Strategies to resolve ambiguity:
1. Summarize the risk function as a scalar.

a) Average-case risk: for some measure A, minimize R(6,0)dA(#). This is called the Bayes
(a) g ; o R(0, y
estimator, and A is the prior.

(b) Worst-case risk: minimize supycg R(0,9) (over 6 : X — R).
2. Constrain the choice of estimator.

(a) Only consider unbiased §. Eg[0(X)] = g(6) VO € ©.

2.3 Exponential Families

An s-parameter exponential family is a family of probability densities {p,, : n € E} with respect to a
measure p on X of the form

pu(x) = exp{n' T(x) — A(n) }h(z)

where T : X — R® is a sufficient statistic, h : X — R is the carrier/base density, n € = C R® is the
natural parameter, and A : Z — R is the cumulant generating function (CGF). The CGF A is totally
determined by 7', h since we have fX pndp = 1Vn. So,

Aln) =105 | T Oha) dufa).

py is only normalizable if A(n) < co. The natural parameter space is the set of all “allowable” 7,

== {77 : /e"TThdu < oo}.

If = is the natural parameter space, {p, : 7 € Z} is in canonical form. p, is convex in 7, so Z is convex.
Note that we have the same exponential family if:

e we change p ~> fi, where
and then h ~ h = 1.

e Or, (if 0 € 2), take h ~ h = po, and A(n) ~ A(n) = A(n) — A(0).
Interpretation of Exponential Families:

e Start with a base density po.

e Apply an “exponential tilt”:

1. multiply by en' T

2. renormalize (if possible)

An exponential family in canonical form is all possible tilts of & (or any p,) using any linear combination of T'.
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Example 2.2. Let X ~ N (u,0?), p € R, 02 > 0. Let 0 = (u,0?).

o (@=1)?/(20%)

Then:

T(z) = (z,2?)
) = \/%71
B(6) = A(n(9)) = . + = log(o?)

In canonical form:

pol) = ememe* Ao,

2
Uh 1
A(n) = — — =log(2ns) + 1 V2
(n) dg; 2 0g(272) og( 7T>

Example 2.3. Let X;,..., X, =& N(p,0?).
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3.1 Integrals

The integral [ fdu is generally abstract.

If dp = p, then /fdu = / f(x)p(z)dx.
rER”

dAgn
It dié—’ux = p, then /fdu = Iezxf(x)p(x)

Note that if X ~ AN (0,1), then X, the positive part of X, does not have a density with respect to Lebesgue
measure or counting measure.

3.2 Exponential Family Examples
Example 3.1. If X ~ N (i, 0?), with density

L —@wi/eo),

PO) = Jo®
then
/o? a8 5 u? 1 9
= [5/(202)] ; T(x) = [ﬁ] ; A(n(p,0%)) = 257 + §loga .

n n 2

1 i 1 2 (M 1 2
= G {7 o~ gm 2ot (g + g lose’) }

and

T(x) = [Zg‘l xé] . on= [ w/o® } . A) =nAW(n).

10
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Generally, suppose X1, ..., X, W g T=AMm) Then,

X ~ py(z) = HenTT(wi)*A(n)h(xi)

i=1

= o1 Tl T =nAC) TT h(ay).

i=1
T(X) also follows an exponential family. If X ~ p)X(z) = en' T(@) =AM pX (x), then (informally)
P, (T(X)=t) = / M A X (1) dp(z)
{z:T(z)=t}
so

s —erao [ BX (2) du(e)
{:T(z)=t}

RT ()

3.2.1 Binomial
If X ~ Binomial(n, ),

po(x) =60%(1—0)"~* (n>

0 \* nfm
:(1—0) (1-96) (m)
— oz log(6/(1-0))+nlog(1-0) (n) ’

T

with natural parameter

0
:1 —_—
n(0) = log ;—,

A(n(9)) = —nlog(1 —6).
3.2.2 Poisson
If X ~ Poisson()\), then

ATe~A
gl

1
= exp{(log \) — A},

pa(x) , x=0,1,...

with natural parameter

n(A) = log A.

3.3 Differential Identities

Theorem 3.3 (Keener Theorem 2.4). For f: X — R, let

Ep = {77 eR®: /|f|e"TThdu < oo}.

(21 is the natural parameter space.) Then, g(n) = ff(x)e”TT(m)h(x) dp(z) has continuous partial

11
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derivatives of all orders for n € E$, which can be computed by differentiating under the integral.

This implies
oAl _ /enTT(f)h(x) du(z)
has partial derivatives of all orders.

Differentiate (3.1) once:

0 jam _ 9 / W' ()
— =— [ e "Wh(x)du(x
5t = 5 (x) du)
o 7T
= [ —e”Thd
/3%‘ :
0 / Tr_A
—A(n) = | Tje" T=AMpq
0
—A(n) =E,[T;(X
on; (n) n[T5(X)]
so VA(n) = E,[T(X)].
Differentiate (3.1) twice:
”2 o2 :
(m — n'T
oo, On; 0 / ¢ hdu
8° ) P N .
— —_ (n) — o' T
(g A + 5 Al) 5= A) )& = [ 17 ha
82
——A) + En[T;(X)] Ey [T5(X)] = By [T5(X) T3 (X)]
877ja77k

82
On; O,

A(n) = covy (T(X), Ti(X))
so V2A(n) = var, T(X) € R¥**.
3.3.1 Moment Generating Function

okt +ks

e~Am_ =
oy - - ot

eAln) — ]E”I[lel Ts’f}

In fact, eATW =40 is the MGF of T(X) if X ~ p,,.
My x)(u) = Eyle 7]
_ /euTT—s-nTT—A(n)hdu
_ At - Ap) / el T=A(+u)
= eAlntu)=Am)

The cumulant generating function is Kp(x)(u) = log Mp(x)(u) = A(n +u) — A(n).

12

(3.1)
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3.4 Sufficiency

Suppose X1,..., X, & Bernoulli(), then T(X) = Y ; X; ~ Binomial(n,§). How do we justify throwing

away information?

Definition 3.4. Let P = {Py : 6 € O} be a model for X € X. We say T'(X) is sufficient for P if
Py(X | T) does not depend on 6.

Example 3.5. If T(X) = Y | X; = ¢t € {0,...,n}, then conditionally, X € {0,1}" is uniformly
distributed on all sequences with Y | x; = ¢.

n

Pix =2 T=0 =1} 0=t} =0

62i=1 % (1 — @)~ i1 %

=10
ll{z a5y = t}(i)

i=1 t

3

I
=

S

3.4.1 Sufficiency Principle
If T(X) is sufficient, any statistical procedure should depend only on T'(X).

Suppose §(X) is an estimator of § which is not a function of T'(X). Then, §(X) and §(X) have the same
distribution, where X is “made up” given T'(X).

Bayesian interpretation: If 6 is random, 6 ~ A, X | 0 ~ Py, then 6 — T(X) — X is a Markov chain if T is
sufficient. Then, we could generate fake data X from T'(X).

3.4.2 Minimal Sufficiency
X and T'(X) are both sufficient in the binomial example, but T'(X) is “more compressed” than X.

Definition 3.6. T'(X) is minimal sufficient if
1. T(X) is sufficient,
2. for any sufficient S(X), T'(X) = f(S(X)) for some f.
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4.1 Sufficiency
T(X) is sufficient for P = {Py : 0 € O} if Py(X | T) does not depend on 6.
Interpretation: Nature generates data in two steps.

1. Generate T' (uses 6).

2. Generate X given T'(X) =T (does not use ).

4.2 Factorization Theorem

Theorem 4.1 (Factorization). Let P = {Fy : 6 € ©} be a family of distributions dominated by
(Py < p, ¥0). T is sufficient for P iff there exists functions gg,h > 0 such that pg(z) = go(T(x))h(z)
(for a.e. x under p).

“Proof” (rigorous proof in Keener 6.4). (<)

_ 9eft)h(2) L{T (z) =t}
Jer(ey=1y 9ettTh(s) dpu(s)’

po(z | T(z) =1t)

(=) Take

Example 4.2 (Exponential Families).

po(z) = 7@ T@=BO) by,
| —

g0 (T ()

14
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Example 4.3. If X;,..., X, s U6, 0 + 1], then the density is pg(z) = 1{0 <z < 6 + 1}. So,

po(x) = H]l{e <z, <0+1}=1{6 < (1), T(n) < 0+ 1},

i=1
and (X (1), X(y)) is sufficient.
Example 4.4. Suppose X1,...,X, £ Pe(l)7 where P(1) = {Po(l) : 0 € O} is any univariate model on
X CR. Py is invariant to permutations of the vector X = (X;,...,X,,). Therefore, the order statistics

(X(1ys -+, X)) (Where X(3) <--- < X(y,)) are sufficient. More generally, the empirical distribution

1
= Z 0, is sufficient.
n

=l

4.3 Minimal Sufficiency

When X4,..., X, BN Bernoulli(d), then T'(X) ~ Binomial(n, §) is sufficient.

Definition: T(X) is minimal sufficient for P if
e T(X) is sufficient,
e for any sufficient S(X) there exists f with T(X) = f(S(X)) a.s. in P.
Suppose S, T are both minimal. Then, S(x) = f(T(z)) and T'(x) = g(S(x)), so they can be recovered from

each other.

Theorem 4.5 (Keener 3.1). Assume P = {pp : 0 € O} is a family of densities w.r.t. u and T(X) is
sufficient. If pg(x) g po(y) implies T(x) = T(y), then T(X) is minimal sufficient. [The log-likelihood
satisfies £(0; z) = £(0;y) + constant, where £(0;x) = log pg(x)./

Proof. Suppose S is sufficient and there does not exist f such that f(S(x)) = T(x). Then there exist
x, y with S(z) = S(y) but T(z) # T(y).
po() = go(S())h(x)
g 90(S()) 1 (y)
=po(y)

so T'(xz) = T(y), which is a contradiction. O

Example 4.6. If py(z) = e”(Q)TT(”)_B(Q)h(:U), is T'(x) minimal? We want to show that if pg(z) g po(y),
then T'(x) = T(y).
Po(z) g po(y) <« €7@ p @ TW)
<« 7(0)"T(x) = n()"T(y) + constant
= ((61) —n(62))"(T(x) = T(y)) =0, V61,6,
<~ T(z)—T(y) L span{n(01) — n(62) : 61,05 € O}.

So, if span{n(61) — n(f2) : 61,02 € O} = R*, then T(X) is minimal.
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Example 4.7. Suppose X ~ Ny(u(6), ). The density is pg(z) = e® 2=BO)e—="2/2 1t @ = R,
w(0) = a+ b for some a,b € R?, then X is not minimal (b" X is). If

)= |2

then X is minimal.

Example 4.8. Let

iid. 1 .
X, ., X, '~ p(gl)(m):ie =61,

Then,

n

po(z) = Z%exp{ Z|xi—9\},
i=1

£(0;x) = logpp(z) = — Z|ml — 6| —nlog2.

=1

The function #(0; z) is piecewise linear with knots at the z;. The maximum likelihood estimator is the
median. When is ¢(6;z) = £(0;y) + constant? This occurs if and only if x and y have the same order
statistics. Therefore, (X(;))7_, is minimal sufficient.

4.4 Completeness

Definition 4.9. T(X) is complete for P = {Py : § € ©} if Eg[f(T(z))] = 0 V0 implies

f(T(X) =0  ve.

Example 4.10. If X, N U[0,0], where 6 € (0,00), one can show that T'(X) = X,y is minimal

sufficient. The density of T'(X) with respect to A([0, 00)) is:

- )

po(t) =

Suppose

0 =Eo[f(T)], Vo >0

/f )1 dt, Vo > 0

— = n—1
0_/0 fttdt

which implies f(#)t"~! = 0 for a.e. t > 0, and so f(T(X)) = 0.

then
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5.1 Completeness
Definition: T(X) is complete for P = {Py : § € ©} if Eg[f(T)] = 0 V6 implies f(T) = 0 V6.
Definition 5.1. Let P = {py : 0 € O} be an exponential family of densities (with respect to ),
po(z) = en(e)TT(w)—B(e)h(x).
Assume WLOG that there does not exist v € R®, ¢ € R with v"T(X) %2 ¢, V6. If
E=n(0)={n(0):0€c6}

contains an open set, we say that P is full-rank. Otherwise, P is curved.

Theorem 5.2. If P is full-rank, then T'(X) is complete sufficient for P.

Proof. The proof is in Lehmann & Romano, Theorem 4.3.1. O

Example 5.3. If X ~ N (u,0?),

o) mo-[2)

X is complete sufficient. T'(X) is also complete sufficient because it can be computed from X.

Theorem 5.4. If T'(X) is complete sufficient for P = {Pp : 0 € ©}, then T'(X) is minimal sufficient.

Proof. Assume S(X) is minimal sufficient. Then, S(X) * f(T(X)). Note that
p(S(X)) = Bo[T(X) | S(X)]
does not depend on 6. Define g(t) =t — u(f(t)).

Eo[g(T(X))] = Eo[T(X)] — Eg [(S(X))]
= E[T(X)] — Eq [E[T(X) | S(X)]]
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=0 v,

so g(T(X)) 2 0 V6. Hence, T(X) = u(S(X)). O

5.2 Ancillarity & Basu’s Theorem

Definition 5.5. V(X) is ancillary for P if its distribution does not depend on 6.

Theorem 5.6 (Basu). If T(X) is complete sufficient, and V(X) is ancillary for P, then

V(X)L T(X) V.

Proof. We want to show Py(V € A,T € B) = Py(V € A)Py(T € B). Let qa(T) = Py(V € A|T).
Eg[qa(T(X)) —pa]l =pa—pa=0  (V0)

since BolPy(V € A | )] = EalEg[1a(V) | T)] = Po(V € A), 50 4a(T) * pa.

:PG(VEA)PG(TGB) O

Remark: Ancillarity, completeness, and sufficiency are properties relative to a family P. Independence is a
property relative to a distribution Py.

Example 5.7. Let X,..., X, S N(u,0%), p € R, 02 > 0. Define

_ 1 n _

_ . 2 L 2

X = X;, S_n_1§(XZ X)2.
=1

S|

1

s
Il

In fact, X AL S%. Let Py2 = {N(1,0)" : p € R}, for 0* > 0 fixed. X is complete sufficient for P,>. S?
is ancillary. Indeed, define Y; = X; — u ~ N(0,02). Also, X; — X =Y; - Y, so

n—1 4

1 n
8% = > (¥ -Y)?
i=1
has a distribution which does not depend on .

5.3 Rao-Blackwell Theorem

5.3.1 Convex Loss Functions

Definition 5.8. f is convex if f(yz+ (1 —v)y) < vf(x) + (1 —v)f(y) for all v € (0,1) and all x # y,
and f is strictly convex if the inequality is replaced with strict inequality.

Theorem 5.9 (Jensen). If f is convex, then f(E[X]) < E[f(X)]. (If f is strictly convez, then the
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inequality is strict unless X “= ¢ for some c.)

19

If L(,d) is convex (in the second argument), it penalizes us for adding extra noise to §(X). Let 6(X) =

0(X)+Y, where Y is mean-zero noise (Y 1L X).

R(0,6) =Eg[L(0,Ee(d | 6))],

and L(0,Ey(3 | ) < Eg(L(6,3) | 8), so R(6,6) < R(8,5).
5.3.2 Rao-Blackwell Theorem
Theorem 5.10 (Rao-Blackwell). Assume T'(X) is sufficient and 6(X) is an estimator. Let
§(T(X)) =E(6(X) | T(X)).

If L(0,) is convex, then R(0,5) < R(0,8). If L(0,-) is strictly conver, then R(6,6) < R(0,6) unless
3(T(X)) = 86(X).

Proof.
=By [L(6,5(X))]
o 1]
R(0,0) = Eg[L(6,0)]
— By [Ba(L(0.8) | T)].
The result follows from L(0,Eq(6 | T)) < Eo(L(6,0) | T). O

5.4 Bias-Variance Decomposition

MSE(6,6) = Eq[(6(X) — 9(6))?]
e[(5(X) Eq[0(X)] + Eo[6(X)] ~ 9(0))?]
Eq [(0(X) — Eg[5(X )]) ]+Ee[(Ee[é<X>J ~4(0))*]
+2Ey [(0(X) — Ep[0(X)]) (E[0(X)] — g(6))]

mean zero constant
= varg 6(X) + (E9[6(X)] — 9(9))2
N——

variance (biasg 5(X))2
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6.1 UMVU Estimation
6.1.1 Bias-Variance Tradeoff
MSEg(0,6) = Eo[(g9(0) — 6(X))?]
= varg §(X) + (Eo[0(X)] — g(6))*.
6.1.2 Unbiasedness

P ={Py: 0 c O} is the model. §(X) is unbiased (for ¢(0)) if Eo[d(X)] = ¢(0), for all § € ©.

Definition 6.1. g(0) is U-estimable if there exists any unbiased estimator.

Example 6.2. Let X ~ Bernoulli(). Then, Eg[§(X)] = 05(1) + (1 —60)5(0). So, 62 is not U-estimable.
Any function of # which is U-estimable must be of the form af + b.

Definition 6.3. We say that §(X) is uniformly minimum variance unbiased (UMVU) if §(X)
is unbiased, and for any unbiased §(X), varg 6(X) > varg §(X), for all § € ©.

Theorem 6.4 (Theorem 4.4). Suppose T is complete sufficient and g(0) is U-estimable. Then, there
is a unique (up to almost sure equality) UMVU estimator of the form o(T(X)).

Proof. Let §p(X) be unbiased and 6(T") = E(5o(X) | T).

Eg[6] = E[E(do | T
= Eg[do(X)] = 9(6),
so 8(T) is unbiased. If §(T) is unbiased, then Eq[6(T) — 6(T')] = 0, for all §, which implies §(T") = §(T)

by completeness. Suppose 6*(X) is unbiased. Then, §(T) %2 E(6*(X) | T), so varg 6* > varg § for all 6
(with strict inequality unless §* =" §). O

6.1.3 Interpretation of 6.4
We have two ways to find UMVUE.
1. Find any unbiased 6(T) (when T'(X) is complete sufficient).

20
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2. Find any unbiased do(X), and then Rao-Blackwellize it.

Remark: Under the hypotheses of 6.4, the same proof works for any convex loss.

P describes a linear transformation from random variables to functions of 6:
£00) = [ f@)dP@) =E7(X)
Then, completeness of X is equivalent to saying that this map is one-to-one. For T'(X), think of PT, where
P} is the distribution of T'(X).
6.2 Examples

Example 6.5. Take X;,..., X, o Poisson(#), 6 > 0, with density

fre—"?

z!

po(x)
on X ={0,1,2,...}. The complete sufficient statistic is 7'(X) = Y ., X; ~ Poisson(nf).

(no)tcfne

e (t) = i

Estimate g(#) = 62.

d(T) unbiased <= ié(t)pg(t) = 6?

t=0
<~ 't gans _ N~ ghie
= nov _
= D M) =02 = S0 W0 >0
t=0 k=0

Match terms: §(0) = 6(1) = 0. For t > 2,

SO

Example 6.6. Let Xq,..., X, R U[0,0]. T = Xy is complete sufficient. Estimate g(0) = 6.

Then,

so (n+1)T/n is UMVTU.



LECTURE 6. SEPTEMBER 12 22

The sample mean is

with

So, 2X is unbiased. Also,

= 2 2
E(2X |T)= =T +E|= Y, ]
n n 4 ~—~
=1 ;4. Ulo,T]
2 —
_ 25 2(n—1) (f)
n n 2
1
_"tlr
n

Keener shows that as n — oo,

where f(n) < g(n) means

0< liminfM < limsupM < 00.
n—oo g(n) T nooo g(n)

In the above example, (n + 1)T'/n is inadmissible (with respect to MSE). (n 4+ 2)T/(n + 1) is better. It is
well-known that 7' ~ Beta(n, 1).

6.3 Log-Likelihood & the Score Function

Let P = {pp : 6 € O} be a family of densities with respect to u, © C RY. Assume the densities have a common
support: {z : pg(x) > 0} is the same for all §. Define the log-likelihood function ¢(0;x) = logpg(x). The
score function Vy{(0;x) plays a key role. Useful facts (assuming enough regularity): 1 = fX e %52) dp(x),
so by differentiating with respect to 6;,

— (2 06 2) ) b0
O—/(aejﬁ(ﬁ,x))e dp(x),

so Eg[Vgl(0;z)] = 0. Differentiating with respect to 6y,

0= /( e £(6;x) + ié(ﬁ;x)iﬁ(ﬁ;xnez(a?z) dp(z)

90,00, 90 90,
o2 P P
= Ey {Waeke(a, X)| +Ey {%6(0, X) g0 X))

covy((Vel(0:X));,(Vel(6;:X))k)
so that
varg Vol(0; X) = —Eg[V3L(0; X))
= J(0),

the Fisher information matrix.
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7.1 Log-Likelihood & Score
The log-likelihood is £(6;z) = log pg(z) (assume py(x) > 0). From 1 = [ (%*) dyu(z), we obtain

Eo[VE(0; X)) = 0,

score

J(0) = varg VL(0; X) = —E[V?4(0; X)].

Remark. Recall that (¢(0; X) — £(6p; X))sco is minimal sufficient for fixed 6y. In a “local neighborhood” of
o, we can think of V£(6y; X) as “approximately minimal sufficient” or “approximately complete”. Consider
the “local model” Py, . = {Pyy4n : |0l < €}, then

p90+’fl( ) e£(90+77795)

~ enTvZ(eo;w)peo (CE)

7.2 Cramer-Rao Lower Bound

Suppose §(X) is unbiased, §(X) : X — R, for g(0) = [, 6(z)e’®®) du(z).

/6(m)V (0; 2)e" ) dp(x)

= Eo[8(X)VL(0; X)]
= covg (6(X), VL(0; X)).

Suppose § € R. We know (varg (X)) (varg ¢'(0;x)) > cove(3(X), ¢'(0; X))?, so
cove(3(X), ¢'(0; X))?

varg 6(X) > 70)
_ g0
J(0)
When ¢(0) = a + b0, then
varg 6(X) > JZZH)

which scales correctly. For the multiparameter case: varg 6(X) > (Vg(0))TJ(0)"1Vg(6).

23
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Example 7.1. Suppose we have i.i.d. samples, X1,...,X, R pél)(m), 0 € ©. So,

X ~po(x Hp(l)
Then,
£1(0; ) :logpél)( U,
£(0; ) = log py(z Zél (6; ),

J(0) = varg V{(6; X)

= varg (i Vi, (0; X))

i=1
= nvarg V{1 (6; X)

Thus the lower bound on the variance scales as n~!. In the case of the uniform scale family with density
L opiem
po(x) = o 1{z'"™ < 6},

the log-likelihood £(0; ) = —nlogf — 0o 1{f < 2™} does not possess sufficient regularity properties to
apply the bound.

7.2.1 Efficiency

We say 6(X) is efficient if vargd(X) equals the Cramer-Rao lower bound (CRLB) (or 70% efficient if
CRLB/(varg 6(X)) = 0.7). Note that the efficiency is fully determined by the correlation

CRLB

m = COITy (6()()’@/(9; X))g.

7.2.2 Exponential Families

We have
pn(fr) = —Al h(z)v
£(n; ): T(x) — A(n) +log h(x),
Vi(n; z) = T(x) — Ey[T(X)],
var,, VU(n; z) = var, T(X) = V2A(n) = J(n).

7.3 Hammersley-Chapman-Robbins Inequality

p@-{-e(x)

—1= 65(9-‘4—5;%)—@(9;.%) _1
po(z)

~ e"VI(0; x),

ey 1] = [ (B = o
=1-1=0,
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covy (p;:Z;)i) - 1,(5(X)) = /5(% - l)pg du

= Eg4e[5(X)] - Egl6(X)]
— g(0+2) — g(0),

. (9(6 +¢) — g(6))?
varo (X = S e ()20 () — 1]

Example 7.2 (Curved Exponential Family). For 6 € R, let n(0) € R® for s > 1.

po(z) = &1 T@=BEp(g),
V(0 ) = Vn(0) T (x) — VB(6)
V(@) {T(x) — VA(n(6))}
Vn(0) (T — Eg[T)).

Example 7.3 (Keener, Example 4.7). Let X ~ Poisson(f) truncated to {1,2,3,...}.

6re=?
pg(x)—m, l’—172,3,...

Estimate g(#) = e 9.

SO

and therefore:

The only unbiased estimator is stupid!
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8.1 Variance Bounds

Suppose X ~ Na(u(8),1s), u(6) = (0,Csin(f/n)), for # € R. Estimate g(f) = 0. Then, §(X) = X; is
unbiased, varg 6(X) =1 for all 6.

CRLB:
1
0(0;x) = *§HN(9) — z||? + constant,

L 0(632) = (@ — ) TVu(6)

a0 o ;
=71 "; 7 eos() (w2 = Csin ),
J(0) :1+%,
varg 0(X) > HC#Z/”Q

If C =0, then the bound is 1. If C'— oo, then the bound goes to 0.

HCR: For § =0,e =1,

8.2 Bayes Risk, Bayes Estimator

8.2.1 Frequentist Motivation
The model is P = {Py : 6 € Q} for the data X € X. We have a loss L(6, d) and thus a risk R(0, ).

Bayes Risk: Let A be a probability measure, i.e., A(Q) = 1.
RBayes(A7 6) = / R(a, 5) dA(G)
Q
=Eoa[R(0,0)].

26
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da(X) is the Bayes estimator (for A) if it minimizes Rpayes(A, 0).
8.2.2 Bayes Estimator

Theorem 8.1. Suppose © ~ A and X | © =0 ~ Py. Also, L(0,d) > 0 for all 0, d. If
E[L(©,d0(X))] < o0
for some 6y, and o (x) minimizes E[L(©,d) | X = z], P-a.e., then dp is Bayes for A.
In this setting,

R(0,6) =E[L(8,5(X)) | © = 6].

Proof of 8.1. Let 6(X) be another estimator.

Rpayes (A, ) = E[L(8,8(X))]
—E[E[L(6,6(X)) | X = 1]
> E[E[L(@,aA(X)) | X = xﬂ
= Rpayes(A, 04). =

Usual Interpretation: A is the “prior belief” about 6 before seeing data. The posterior (distribution of ©
given X) is the belief after seeing data.

In terms of densities, A(6) is the prior density and py(x) is the likelihood. The posterior density is

A0
Jo A¥)py () dy
and q(z) = [, A( ) df is the marginal density of . § minimizes [, L(6,d)A(0 | ) df for the observed

x.

8.2.3 DPosterior Mean

If L(6,d) = (g(f) — d)?, then the Bayes estimator is the posterior mean. We want to minimize
/Q(g(@) —d)’A(0 | 2)d0 =E[(9(0) —d)* | X = 2]
= var(g(©) | X =) + (d —E[g(0) | X = a])?,

so 0x(z) = E[g(©) | X = z]. More generally, suppose L(6,d) = w(0)(g(d) — d)? (for example, we might want
to minimize

o= (%51,

the relative error). Then, the Bayes estimator is

8.3 Examples
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Example 8.2 (Beta-Binomial). Let X | © = § ~ Binomial(n, #), with likelihood

X

n
) =021 - 07 (")
forz =0,...,n, and © ~ Beta(a, 8), with prior density

_ pa—1l/1 _ 1L (@)l(8)
A0) =67 (1 9)5 7F(a+5)'

The posterior density is, for 6 € [0, 1],

A(0)po(x)

q(z)
xp 02711 —0)P10%(1 — 9" 2
_ 0a+m71(1 . 9)B+nfa:71

A | z) =

and so © | X =z ~ Beta(z + a,n — x + ). Thus,

X+«

B0 = et s

_ { n . @ (1 _ n )
" n n+a+pB a+p n+a+p/
Interpretation: We have a +  “pseudo-trials” with « successes.
Example 8.3 (Normal Mean). Let X | © = 6 ~ N (0,0%/n). The likelihood is
po(ff) g efn(w79)2/(202).
Also, © ~ N (1, 72) with prior
() oo e~ (0—m)?/(27%)

So,

n(zx — 0)2 0 — )2
A2 e exp{— (202) _( 272) }
nxf 6 nb? 62
O(geXp{?—F%—i—i}

nx ’
= exp{e(ﬁ T %) - 2/(n/gg+1/7-2)}
e+ o) (v %) — 62
20272 /(02 + nr?)

Xg exp{ —

and so
nxr? + ,an o272 )
nr2+o02 o2+ nr2/)’

01X ~N(

nX12 + po? nt?
B X)= nr2 + o2 :X.02—|—n7'2+ﬂ-<1_

02 + nr2

28

).
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Suppose 72 = o2 /m.
x ( no?/m

o2 +no?/m

)

+u-(1

no?/m
o2 +no?/m

)=x

|

m-+n

)

n—+m

).

29
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9.1 Properties of Bayes Estimators

9.1.1 Bayes & Bias

Theorem 9.1. The posterior mean is biased unless 5 (X) = g(0).

Proof. Assume 5 (X) is unbiased.

In(X) =E(9(®) | X)
9(8) =E(4(X) | ©)

Condition on X:

E[E(5:(X)g(®) | X)] = E[5a(X)E(g(0) | X)]

Condition on ©:

So,

9.2 Conjugate Priors

If the posterior is from the same family as the prior, we say that the prior is conjugate.

o9

Suppose that Xi,...,X, N pn(x) = e"TT(””)_A(")h(:E).

Prior: A\ u(n) = ek“T”_kA(")_B(k’m)/\0(77). The sufficient statistic is

[A?n)} c R5t!

30
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and the natural parameter is [kkﬂ } . Then,

n

A | X1, X)) o< (H enTT(mi)fA(n))ekuTnka(n) M)

=1
n T
= exp{ (ki + > T(1)) 01— U+ m)A@®) Pro(n)
=1
= Motk ) (k-tn)+T-n ) (o-+n) (1)
So, starting with prior A\g and data

Wy ooy ity T(x1), .., T(ay)
k

is equivalent to starting with the prior Ay, and data T'(z1),...,T(z,). They both yield the posterior
Akt popaelo (k) +Tom / (k-4n)

Likelihood Prior
X, ~ Binomial(n, 0) O ~ Beta(a, f)
_px n—x n _ pa—1 —IF(O‘)F(B)
=6%(1-0) (x> =021 —9)° Tt )
k=a+p
o«
P ar B
X; ~ N(0,0%) (02 > 0 known) O ~ N(u, %)
_ L a0 _ 1 ewre
2702 2mr?
X, ~ Poisson(9) O ~ Gamma(k, o)
A _ 1 k—1.-0/c
x! I'(k)ok

For the gamma prior,

MO | ) ocg 2i=1Tigm0gh—1e=0/c
— GRS, Ti—1 = (n1/0)6

& 1
Xg Gamma(k + i:Zl.'I;i7 m).

Here, ko = “y” and 1/0 = “k”.

9.3 Where Does the Prior Come From?
1. Previous experience
2. Subjective beliefs

3. Convenience prior
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9.3.1 “Objective” Priors
Say X ~ N (#,1). We could take A\(§) = 1. The problem is that A(R) = oo, but this is the limit of A/(0,72)

as 72 — oo. This is called a “flat prior”.

A flat prior is not invariant to reparameterization. If X ~ Binomial(n, §), § ~ U0, 1], and we change to the
natural parameter

=1

then the flat prior is no longer flat.

The Jeffreys proposed fix is to take A(8) ocg |J(6)|'/2. For the binomial case, the Jeffreys prior then becomes
Beta(1/2,1/2) ocg 0~ 1/2(1 — )1/,

9.3.2 Hierarchichal Priors

In some situations, we want to pool information across multiple “replicates”.

Example 9.2. Predict a batter’s batting average after seeing n at-bats. For i = 1,...,m, n; is the
number of at-bats, X; is the number of hits, X; ~ Binomial(n;, 6;).

Prior information: We expect performance to “mean-revert”.

Bayes: Use a prior Beta(cq, 3). We want to learn «, 5 by looking at all players together. So we will use
a hierarchichal model «, 3 s Gammal(k,0), 0; | o, 8 S~ Beta(a, 8), and
independent

Xi | 01 (> Binomial(ni,ﬁi).

This can be represented as a directed graphical model.

k,o

O
&
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10.1 Normal Means Model

independent

Let X; ~ N (i, 1) for i = 1,...,d. Equivalently, let X ~ Ny(u, I;) for p € RY The natural choice
for a prior is the flat prior on p, which yields the estimator §(X) = X for p.

What is the prior for p = ||l = ‘/Z?:1 u?

P(p € [r,r + €]) = vol(shell with radius r, width ¢)
5520 pd_l.
The prior is not agnostic. The estimator then becomes E(p? | X) = || X||?> + d. The UMVU estimator is
p=XI|?—d.
10.2 Hierarchichal Bayes

Directed Graphical Model:

&)
(+4)
® @

m

p(a167917"'79mam17"'7xm ‘ k70) :p(aaﬂ | k7U)HP(92 | a,ﬁ)p(mi ‘ 92)

i=1

We can factorize the likelihood as

33
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Generically,

Po(2)A(0)

M) = T @Me)ac

and the denominator is frequently intractable.

10.3 Markov Chain Monte Carlo (MCMC)/Gibbs Sampler

Definition 10.1. A (stationary) Markov chain with transition kernel @ and initial distribution 7
is a sequence of random variables X(©, X where X(© ~ 714 and

XD | X0 x® L9 | XD),

We can draw a directed graph:

x©0 _, x@ X2 x3)

so that P(X(© =z .. X® = 2®) = 7o(2O) [T}, Q(z® | 20~V).

Ifr(y) = [, Q(y | z)m(z) dz, we say 7 is a stationary distribution for Q. Under mild conditions, X ~
for “large” t. If X is finite, then 7 = 7Q, or equivalently, m(Q—1) = 0, and so convergence says that 7Q* — 7.
A sufficient condition for 7 to be stationary is detailed balance: 7(2)Q(y | ) = 7(y)Q(z | y) Yz, y.

10.3.1 MCMC

Strategy: Set up a @ for which \(f | x) is stationary. Start with ©(°) ~ 7y and run the Markov chain on a
computer to O, Treat ©") as a sample from \(0 | z).

Algorithm:
1. Sample © ~ 7.
2. Fort=1,...,B:
(a) Sample © ~ Q(- | ©).
3. Save O O,
4. For j=1,...,m:

(a) Fort=1,...,T:
i. Sample © ~ Q(- | ©).
(b) Save O+ (@

10.3.2 Gibbs Sampler
Let 6 = (64, ...,04) be a parameter vector.
Update Rule. Given ©(—1):

e Sample O ~ A, [0SV ... 0V X).

e Sample O ~ A(6; |0, 07V ... ol Xx).
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e Sample @((;) ~ A0y | @gt), . .,@fitll,X).

The following example exhibits slow mixing.

1 1
O ~ 5'/\/'2(07]2) + §N2(.[I’a [2)7

oe [,

This particular example can be fixed by choosing a different basis.

where

For a hierarchichal Bayes model:

Parents of §;

|

0;

|

Children of 6;

The parents of §; are “fixed hyperparameters” and the children of §; are “fixed observed data”.

35
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11.1 Empirical Bayes

11.1.1 Normal Means Model
Hierarchical Bayes: Let 72 ~ \(7) (e.g., 1/7? ~ Gammal(k, o)), 0; | 72 b N(0,72) for i = 1,...,n, and

independent

Xi ‘ T79i ~ /\/'(9“1)

Bayesian posterior mean:

_E ‘X)XZ
1472
Define
1
€= 1+ 72

Since X; | 72 "X N(0,1 4 72), X | ¢ ~ N, (0,¢~11,,) with likelihood

C)”/2 X2 no_2
i G (1 f,i).
(27[ © ¢ famma {1+ 9 X

For large n, ||X||?,
n 2 2+n 1 -1
E[Gamma(l—&——,i)} = — = (— Xi) ~(,
2 e = e~ G

n 2 ny\ 4
var Gamma(l + —, 7) = (1 + ,>
27 [|1x]? 2711 X4

1 & -2
—1 2
2 —g X-) — 0.
" (ni_l '

The likelihood is concentrated near = (, so for almost any “open-minded” prior,

5,(X) ~ (1 - ﬁ){%)x

36
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~ (1-0)Xi.
This provides motivation for empirical Bayes.

Empirical Bayes: James-Stein propose (for n > 3)

§I5(X) = (1 - ﬁ)x

Proposition 11.1. If Y ~ x2 forn >3, then E[Y 1] = (n — 2)71.

Proof.

E[] = /oo I L iy,
Y o Y2"2T(n/2)

= 1 (n-2)/2-1,~y/2
= = eV d
/0 92T (n/2) " ¢

_ 20721((n — 2)/2) /°° - y(=D/2-16-u/2 4
2"/2T (n2) o 20-D/20((n - 2)/2)
1

since T'(z + 1) = zI'(z) (so T'(n) = (n — 1)!). O

We know that

X,
1+72 Xn

so that

_n 2 1 1
[ _W}_ 1472

—1-¢.
11.2 Stein’s Lemma/SURE

11.2.1 Stein’s Lemma

Lemma 11.2 (Stein’s Lemma (Univariate)). Suppose X ~ N(6,02). Let h : R — R be differentiable
and E[|W/(X)|] < 0. Then, E[(X — 0)h(X)] = cov(X, h(X)) = o2 E[W (X)].

Proof. First, assume § = 0, 02 = 1. Also assume WLOG that h(0) = 0.
/ zh(z)d(z)de = / x[/ R (y) dy} o(x) dzx
0 0 0
— [ [ tv<o)ar @ dzay
o Jo

_ /Oooh'(y)[ / 2g(x) dz] dy.

Y
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It is a nice fact that

il — = e/
L0 = g " /2= o).

So,

/ e / i)
0 0

A similar argument gives

/ OOO ) ol = /_ OOO B (2) () da.

This gives the result for § = 0, 02 = 1. For general 6, 02, write X = 0 + 0Z where Z ~ N(0,1).

E[(X — 0)h(X)] = ¢ E[Z h(0 + 0 Z)]
9(2)
= o E[g'(Z)]

=o?E[R' (0 + 0 Z)). O

Definition 11.3. Let A : RY — R%. Then Dh € R%*4 ig the matrix with

(Dh(x))m = S—ZJZ (z).

Lemma 11.4 (Stein’s Lemma (Multivariate)). Let X ~ Ny(0,0%1,), 6 € R?, and let h : R — R, If
E[|Dh(X)|¢] = E[(X} ;1 DR(X)2;)Y/?] < o0, then E[(X — 0)Th(X)] = o2 E[tr Dh(X)].

ij=1

Proof.

E[(X; — 0:)hi(X)] = E[E((Xs — 0:)ha(X) | X1,y Xim1, Xig1, - » Xa)]

X_i

=[50 X0
= 0?E[Dh(X);.]. O

11.2.2 Stein’s Unbiased Risk Estimator
We can estimate the MSE for §(X) by plugging in A(X) = X — §(X). Assume 0 = 1. Then
R=d+ |h(X)|?> - 2tr Dh(X).
So,
R(0,8) = Eo||X — 6 — h(X)|?)
= Eo[|X — 0]%] + Eo [ (X)|*] — 2Eo[(X — )T h(X)]
= d + Eo[[|n(X)||*] — 2Eo[tr D1 (X)]

= Ey[R].
This is called SURE.
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Example 11.5. Let 6(X) = X, where X ~ Ny(0, I). Then, h(X) = 0, Dh(X) = 0,s0 R = d = R(6, )
for all 6.
Example 11.6. Take 6(X) = (1 — ¢)X, where ¢ is fixed. Take h(X) = (X. So,
¢ 0
Dh(X) = 8
Thus,

R=d+ % X|? -2
= (1-20)d+ |1 X|?
R(6,6) = (1 —2¢)d + ¢*(||6]]*> + d)
= (1-¢)*d+¢|10]*.

11.3 Stein’s Paradox

James-Stein Paradox: Under no assumptions about 6 = (61,...,6,), X; indepgndent N(6;,1), the “obvi-
ous” estimator X is inadmissible and dominated by §75.

§(X) is location-equivariant if §(X + a) = 6(X) + a. Note that X is UMVU, minimax, and the best
location-equivariant estimator.

For any value 6y € R™, we could shrink toward 6, instead.

n—2 n—2
X)=(1--""%2 Vx4 7% g
50 = (1~ =) X * TR —a®

Then, Rysge(f,67%) < Ryuse (6, X) for all § € R™.

We have:
§8(X) = (1 - ICl);Hz>X’
h(X) = ﬁl);ix,
ieoi? = So2F e = S22,
Dh(X) = 22
0 (d—2)X,

T ox, |X|?
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12.1 James-Stein Wrap-Up

12.1.1 SURE
Define:

R=d+ ||h(X)|?> - 2tr Dh(X)
h(X) =X —6(X)

If X ~ Ny(6,1,), then Eg[R(X)] = MSE. When §(X) = X, MSE = d.

MSE = (1 — ¢)2d + ¢2||6]|%.

12.1.2 James-Stein Estimator

h(X)

IR(X)]1*

Dh(X);

tr Dh(X)

R(3P(X)) =d+

MSE(6, 6°5) = d — E, {

(1—&(;‘;))(

d—2
X1
(d—2)°
X112
oh
o, (%)
0 (d—2)X;
. d
OXi y5 X]
IX1I*(d - 2) —2(d — 2) X7

X
d—2
(d—2)?
X711
(d—2)?* _(d-2)
(X712 X112
B (d—2)?
(X112
(d—2)?
e <

40

When §(X

) = (1 —¢)X, then
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In fact,
d—2
§8(X) = (1 - —)X
X112
is inadmissible because 1 — (d — 2)/||X||? could be negative. We could take

d—2
518+ (X) = (1 - W)+X.
A more practical estimator might be
. d-=3
X —1X]|

§152(X) = X + (1 )+(X—X),

which also dominates X for d > 4.

MSE((1 —¢)X) = (1 —¢)?d + ¢?||0||* is never minimized at ¢ = 0. The minimum is at d/(d + ||0]|?).

12.2 Hypothesis Testing

Our model is P ={Py : € ©}. We want to “test”:

Hy:0€0yC0O null hypothesis
H :0€06,C0O alternative hypothesis

Usually, © U BO; = © and Oy N ©; = &. Hy is the default, and we either “accept” Hy (fail to reject) or
reject Hy (in favor of Hy).

Example 12.1. X ~ N(6,1). Test Hy: 6 <0 versus Hy : § > 0, or Hy : 6 =0 versus Hy : 0 # 0.
iid. i.i.d.

Example 12.2. Let X;,...,X,, ~ Py and Yy,...,Y, '~ P, Test Hy: P| = P, versus Hy : P, # P5.

12.2.1 Critical Function/Power Function

Formally describe a test by defining its critical function (test function).

0, accept
¢(X)=q7me(0,1), reject with probability «
1, reject

(This is a randomized test.) (In practice, ¢(X) = {0,1}.) For non-randomized tests, the rejection region
is R={x:¢(z) =1} and X \ R is the acceptance region.

The power function is 5(6) = Eg[¢(X)] = Py(reject Hp), which is the rejection probability if X ~ Py.

The significance level is a = supyc g, 3(¢). a = 0.05 is very common.

Example 12.3. Let X ~ N (6,1) and we test Hy : § = 0 versus H; : 0 # 0. One test is
$1(X) = K{|X| > 242},
where z, = ®71(1 — ). Other tests are

P2(X) = 1{X > z,},
$3(X) = I{X < —zq/3 or X > 234/3}
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How do we compare the power functions?

42
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13.1 Review: Testing
Test Hy : 0 € Og versus Hy : 0 € O.

The critical function is:

1, reject
d(X)=q7me(0,1), reject with probability
0, accept

The power function is

By (0) = Eo[o(X)]
= Py(reject Hp).

The significance level is ay = supgeg, 55(0).

Example 13.1. If X ~ A(0,1) and we test Hy : 0 = 0, Hy : 0 # 0, then there are numerous possible
power functions and there is not necessarily a best test.

Example 13.2. If X ~ N(6,1) and we test Hy : § < 0, H; : 0 > 0, then there is a single best test:
D2(X) = 1{X > z,}.

Example 13.3. Let X ~ Binomial(n, #). Test Hy : 0 < 1/2 versus Hy : § > 1/2. Then,

1 n . n
Pyg—1/2(X € R) = on Z <33> = multiple of 27".
TER
The optimal test will be of the form:
0, X<ec
¢)(X) =3\ X=c
1, X>c¢

43
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13.2 Neyman-Pearson Lemma

13.2.1 Simple Hypothesis

A simple hypothesis is one that fully specifies the sampling distribution. (©g or ©; is a singleton.) If
©p = {0}, ©1 = {1}, then there exists a unique* best test, which rejects when

p1(X)
L(X)=
(%) po(X)
is large.
pi(X)
L(X)= € 10,00
= <0
(undefined if the expression is 0/0). The test
0, L(X)<c
(X)) =97 LX)=c
1, LX)>c

is an optimal level-ar test. ¢* is called the likelihood ratio test (LRT).

Intuition: The significance level is [ ¢(x)po(x) du(x) (buck). The power is [ ¢(z)p1(z) du(z) (bang).

Proposition 13.4 (Keener 12.1). Suppose that ¢ > 0, and ¢* mazimizes Eq[p(X)] — cEo[p(X)] among
all eritical functions. IfEg[¢*(X)] = «, then ¢* mazimizes E1[¢p(X)] among all level-a critical functions.

Proof. Suppose Eo[¢(X)] < a. Then,

¢"(
= Eq[¢"(X)]. L

Theorem 13.5 (Neyman-Pearson Lemma). The LRT with level o is optimal for testing Hy : 6 = 0
versus Hy : 0 = 1.

Proof. For any test ¢,

Ei[p(X)] = cEo[p(X)] = /(pl(m) — cpo(2)) d(x) du()

= / lp1 — cpolepdu — / lp1 — cpolp dp.
{p1>cpo} {p1<cpo}

Any test maximizing this expression must have ¢*(z) = 1 on {p1(x) > cpo(x)} and ¢*(x) = 0 on
{p1(z) < epo(x)}. Find ¢ such that

Po(p1(X) > epo(X)) < a,
Po(p1(X) < epo(X)) <1 - au

Take « € [0,1] to make the level a. O
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Example 13.6. Let X ~ N(0,1), Hy: 0 = 0y, Hy : 0 = 6;. Assume 61 > 6.

_ p1($) e—(m—91)2/2

Le) = o) = eworr2
ef1z—07/2
_ efoz—02/2

— 6(91*90)1*(%*93)/2_

L(X) is strictly monotone in X, so the distribution is continuous.

P*(X) = ]l{e(el_GD)X_(G%_‘Q%)/2 > c} for some ¢
=1{X > ¢} for ¢ = 6y + z4
= 1{X > 6y + 2o}

¢*(X) does not depend on 6;. Thus, ¢* is uniformly most powerful for testing Hy : 6 = 6y versus
Hy:0 > 0.

13.3 Uniformly Most Powerful (UMP) Tests

Generally, we say ¢* is level-ae UMP for testing Hy : 8 € ©¢ versus Hy : § € Oy if Sy (0) > 54(0) for all
0 € ©4, for all ¢ with significance level < a.

13.3.1 One-Parameter Exponential Families
Let X1,..., X, "= py(x) = M@ =AM p(z) (n € R). Test Hy : n =g versus Hy :n=mn1 (1 > o).
L(iC) _ HZ:I Py (‘TZ)
[Tz pao (22)

e 227y T(wi)—nA(m)
= e iy (@) —nA(0)
— o(m—m0) 227y T(xi)—n(A(n1)—A(no))

¢* rejects when Y ' | T(X;) is large.

0, Y T(Xi)<c
PT(X) =97 i T(X)=c
LY T(X) > o

There is no dependence on n;. Therefore, ¢* is UMP for Hy : n = ng versus Hy : n > np.

13.3.2 Monotone Likelihood Ratio

Definition 13.7. Let P = {pp : 0 € © C R} be a dominated family. Then, P has monotone
likelihood ratio (MLR) if there exists a statistic 7'(X) such that ¢; < 62 implies pg, (X)/pg, (X) is a
non-decreasing function of T'(X).

Example 13.8. If py(z) = e’7(‘9)T(3'c)_B(‘9)h(az:)7 then for 05 < 61,

P, (L) _ (1(6:)=n(02))T(@)~(B(01)~B(02))

Do, ()
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is increasing in T'(x) if n(-) is increasing,.

(We already know that “reject for large T” is UMP for Hy : 8 = 6y versus Hy : 6 > 6;.)

Corollary 13.9 (Keener Corollary 12.4). If pg, p1 are not a.s. equal, and ¢* is the LRT with level «,
then Eqi[¢*(X)] > a.

Proof. E1[¢p(X)] = « is attainable by ¢(X) = «. Therefore, E1[¢*(X)] > a. Find € > 0 and let
B. ={x :pi(z) > (1 +&)po(x)}. Find € > 0 such that Po(B.) > 0. Then, P1(B:) > (1 + ¢)Py(B:). If
Po(B:) > a, let:

~ 0, x ¢ B
¢(X)_{a/P0(BE)7 z € B,

If Py(B:) < a, let:

1, r € B,

One can show that Eq[¢(X)] > a. O
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14.1 MLR =— UMP
Theorem 14.1. If P has MLR in T'(X), then the test ¢* that rejects for large T(X):

0, T(X)<c
¢*(X): Y5 T(X):C
1, T(X)>c

1. is UMP for testing Hy : 6 < 0y versus Hy : 0 > 0y among all tests with significance level at most
a = Eq, [¢"(X)];

2. By~ (0) = Eg[¢*(X)] is non-decreasing in 0, and strictly increasing® whenever 3(0) € (0,1).

3. If 61 < by, then ¢* minimizes Eq, [¢*(X)] among all tests with Eg,[¢*(X)] = o

%Provided that the family is identifiable.

Proof. 2. Suppose 07 < 05. Then,

_ Do, (X)
Po, (X)

is non-decreasing in T'(X). Therefore, ¢*(X) is a most powerful LRT for Hy : 6 = 6; versus
Hy : 0 =05, so it is a MP LRT at level &(01) = B4+(01). By 13.9, then Eq, [¢*(X)] > Eq, [¢* (X))
with strict inequality unless both are 0 or 1.

L(X)

1. Suppose 6; > 6y and some other test ¢ has level < a. In particular, Eg, [QE(X)} < «a. By the NP

Lemma 13.5, ¢*(X) (the LRT) has power at 67 at least Eg, [¢(X)]. By 2, ¢*(X) has significance
level < a, so ¢*(X) is UMP.

3. Suppose 01 < g, Eg,[p(X)] = o If § = Eg, [p(X)] < 6* = Eg,[¢*(X)], this contradicts the fact
that ¢*(X) is most powerful for Hy : 6 = 6y versus Hy : 6 = 0.
]

14.2 Two-Sided Tests, UMPU

Setup: P ={Py:0 € © CR}. Test Hy: 0 = 6y versus Hy : 0 # 6p. Assume T(X) € R is a summary test
statistic, stochastically increasing in 6. Py(T'(X) < ¢) is non-increasing in 6 (Pg(7T(X) > t) is non-decreasing)
so bigger 0 yields bigger T(X).

47
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Example 14.2. If X; R po(x) =po(z —0) for i =1,...,n (a location family), T'(X) might be the
sample mean or sample median.

Example 14.3.

X, bR po(z) = %pl (%)

for 6 > 0, z > 0, is called a scale family.

A two-tailed test based on T(X) rejects when T'(X) is extreme (big or small).

O7 T(X) S (Cl702)
p(X)=<1, TX)>coorT(X)<c
Yis T(X) =G

Thus,

Py, (reject Ho) = Py, (reject because T'(X) small) + Py, (reject because T'(X) large)

= a1 + Q9.

How do we balance «; versus as? Simplest idea: equal-tailed test. oy = ay = /2.

14.2.1 UMPU Test
We say a test ¢ is unbiased if Eg[¢(X)] > « for all § € ©;.

14.3 p-Values

Example 14.4. Let X ~ N (6,1) and test Hp : 8 = 0 versus Hy = 0 # 0. The p-value is
p(z) = Po(|X| > [z]) = 2(1 - ®(2)),
where @ is the A(0,1) CDF.

For simplicity, assume that the test statistic has an absolutely continuous distribution so the test is non-
randomized for all a.

Setup: Consider a testing problem P, Hy, H;. Have a test ¢(X; a) for each a. Thus, ¢(X;a) = 1{X € R,}.
¢(X; @) has level exactly . Assume that the tests are monotone in «: if a3 < g, then ¢(X; 1) < ¢(X; as),
or equivalently, Ry, C R,,.-

Definition 14.5. The p-value is

p(X) = inf{a: $(X;a) = 1}

=inf{a:z € Ry}

Assume T'(X) is continuous and ¢(X; «) rejects when T(X) > t¢,. Then,

p(X)<a e ¢(X;a)=1
— T(X) > t,.

Thus,

p(X) = a > T(X) =t



LECTURE 14.

For 6 € O,

OCTOBER 10

<~ sup ]PT(X*)NPGO (T(X*) > T(X))
00€O0

Py(p(X) < @) =Py (¢(X;0) = 1)
< a.

Q.
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15.1 UMPU Tests for Exponential Families

15.1.1 Two-Sided Test (Based on T(X) € R)

P(X) =41, T(X)E€ e,

{0, T(X) € (c1,¢2)
v, T(X)=¢(i=1,2)

Unbiased. ¢(X) is (level-o) unbiased if Eg[¢(X)] > a for all 6 € ©y.

Consider a one-parameter exponential family (canonical form) p,(z) = M@ =AM b ().

(15.1)
Test Hy : 7 = ng versus Hy : 1 # np.

d

%En[¢(x)] (25( e A(")h( ) dp(z)

Theorem 15.1 (Keener 12.26). For the problem (15.1) with ng € E°, there is a two-sided level-a test
@*(X) based on T(X) where we choose c;, y; to solve

]E”Io [(IZS*(X)] «, (152)
E, [T(X) ((b*(X) = a)] = 0. (15.3)

¢* is UMPU.

Why are (15.2) and (15.3) enough to specify a unique solution for ¢;, 7;? In the continuous case, solving
(15.2) makes ¢z an implicit function of ¢;. Also in the continuous case, (15.3) is equivalent to

Epo[T(X) H{T(X) € R(¢")}] = By, [T(X)]Py, (T(X) € R(¢")),
50 By, [T(X)] = Ep, [T(X) | T(X) € R(¢7)].

15.2 Confidence Sets/Intervals

50
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Definition 15.2. Given a model P = {Py : § € O}, C(X) is a 1 — o confidence set for g() if
Py(g9(0) € C(X)) > 1 — a, for all € © (a confidence interval if C(X) is an interval).

Notes: C(X) is random, not g(#). There is a 1 — a chance that the procedure C(-) will produce an interval
containing the fized value g(6).

Incorrect: “There is a 95% chance that g(6) is in the interval [0.1,0.2] that I just constructed.”

15.2.1 Duality of Testing & Interval Estimation

Suppose we have a level-a: test ¢g,(X) of Hy : 0 = 0y versus Hy : 0 # 0, for each 6y € ©. Assume that the
tests are non-randomized. Let C'(X) = {6 € © : ¢9(X) < 1} (“all non-rejected 6 values”). Then C(X) is a
1 — a confidence set for 6.

Py(0 ¢ C(X)) =Py(¢s(X) =1) <a.
(For g(0), C(X) = {g(0) : o(x) < 1}.)

We say C inverts the (family of) tests ¢g,.

Alternatively, suppose we have C(X), a (1 — a)-level confidence set for 6. Then, ¢g,(X) = 1{0y ¢ C(X)} is
a level-ar test of Hy : 6 = 6 versus Hy : 8 # 6y. Po,(d0,(X) =1) =Py, (C(X) # 0p) < cv.

To test Hy : 0 € Oq versus H; : 0 ¢ O, we can take
e, (X) = min 6s(X)
=1{eyNC(X)=0o}.
For 6 € Og, Eg[pe,(X)] < Eg[ds(X)] < a.
Example 15.3. Let X ~ Exponential(f) with density

1
pe(x) _ 56—95/9

for 2,0 > 0. Then, Pg(X < x) =1 —e /% 5o if we take the a/2-quantile,
% =1-¢% — z= —910g(1 - %)
Similarly, the 1 — /2 quantile is = —0log(a/2). Thus, we reject the 6 values unless

e e
—91 (1——><X<—91 (—)
og ) SX < og( 5
which is equivalent to rejecting unless
X1 log(l — %) <o l<-—x1 log(%>.

Hence,

X X
Cx) = (_log(a/2) " log(1 — a/Q))'

15.3 Testing with Nuisance Parameters

So far, we have studied one-parameter families.
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15.3.1 Nuisance Parameters

The model is P = {Py ¢ : (0,() € Q CR""*}. § € R* is the parameter of interest and ¢ € R" is the nuisance
parameter. We test Hy : 6 € Og versus Hy : 6 € O4.

Example 15.4. Let X;,..., X, =& N(p,0?) and Yi,...,Y, = N (v,0?), where u,v € R, 02 > 0,
and all parameters are unknown. Test Hy : = v versus H; : p # v. Then, 6 = y — v is the parameter
of interest and ¢ = (u + v, 02) is the nuisance parameter.

independent
~Y

Example 15.5. Let X; Poisson(A;), A; > 0, for ¢ = 1,2. Test Hy : Ay < Mg versus
Hy : A\ > Xo. The parameter of interest is § = A;/\y and the nuisance is { = A\ or { = AjAs.
Thus, we equivalently test Hg : 0 < 1 versus Hy : 0 > 1.

Example 15.6. Let X;,..., X, . P, Y,....Y, o Q. Test Hy: P = @ versus Hy : P # Q. The

nuisance parameter is P, which is infinite-dimensional.
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16.1 UMPU Testing with Nuisance Parameters
16.1.1 Multiparameter Exponential Families
Model: pg ¢(z) = eeT(wHCTU(@’A((”C)h(I), where § € R, ( € R*7L. Test Hy : 0 = 0y versus Hy : 0 # 0.

Basic idea: eliminate ¢ by conditioning on U(X) (condition on sufficient statistics of ©¢). Under Hy, 6 = 6,
is known, so U(X) is sufficient under Hy. If we condition on U(X), we get a simple null.

B T (@) +TU@)=AOOp(3) 1{U (2) = u}
a f{U(z):u} eOT(Z)+CTU(Z)7A(0’C)h(Z dz

poc(a | UX) =)
— eGT(z)fflu(O)hu(x)'

There is no dependence on ¢, so T'(X) is the sole sufficient statistic. We will show that the optimal test
rejects when T'(X) is extreme given U(X).

Example 16.1. X; ~ Poisson(\;) and X5 ~ Poisson()z) are independent. Test: Hy : A} = Ay versus
H1 5 )\1 75 )\2.

1
_\T1\T2 ., —A1—A
PAE) = A Agte !
— e:El log A1+x2 log Aa—A1—A2 1
z1!29!
o e(:vlf:vg)(logAlflog)\g)/2+(m1+m2)(log)\1+log)\2)/2 1 )
¥ xl!xgl
Thus,
T(z) = z1 — 2,
- log A1 — log Ao
= —2 ,
U(x) =21 + @2,
log A1 + log A
(=B TOB%

53
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Now, Hy is equivalent to # = 0 and H; is equivalent to § # 0. Condition on U(X) = X; + Xs = u.

|
_ u!
pg(:r | 1+ x9 = u) Xy gl@1—22)0
z1!z9!

_ e(2x17u)9 < u >
Z1

O(q; eZEl log()\l/AQ) U
T

A1
» Bino 'al( , )
X 1NO11. u )\1 T )\2

1
= Binomial (u, 5)

under Hy. Reject if X; — X, is extreme given U(X), or equivalently, reject if X; is extreme given
X1+ Xo = u. If testing Hy : A1 < A, equivalently test 6 < 0. If testing Hy : A1 < 3)\g, equivalently
test 0 < log(1/3).

Theorem 16.2. Consider testing either Hy : 0 = 0y or Hy : 0 < 0y in an exponential family model
P = {poc(x):(0,¢) € Q}, where pgc(x) = eeT(m)+<TU(m)_A(9’<)h(x). Q is open, so P is full-rank. Then,
there is a UMPU test of the form: ¢*(X) = (T(X),U(X)) where

1, t < ci(u) ort > co(u)
w(t7 U) = 'Yi(u)v = ci(u)
0, t € (e1(u), ca(u))
for Hy : 0 = 0y, or
1, t > c(u)
1/}(15, u) = 7(“’)7 = C(u)
0, t < c(u)

for Hy : 0 < 0y, where v is chosen such that
Eg,[¢"(X) | U(X) = u] = a, Y (16.1)
Eo, [T(X)(¢*(X) — a) | U(X) =u] =0, Yu (16.2)
(where (16.2) is only for the two-sided version).

Note: There is no dependence on (.

Proof Sketch (One-Sided) of 16.2. We need 8 < « on Qg (this is the significance level) and we need
B > « (unbiased). Let w = {(6p,¢) : ¢ € R} N Q be the boundary.

Steps:
1. Any unbiased test must have 5(6y, () = « for all ¢ (the power is > « on w, by continuity).
2. Therefore, Eg, [¢(X) | U = u] = « for all u (by completeness).
3. ¢* is optimal among tests that condition on wu.

Step 1: Recall Eg ¢[|¢(X)|] <1 < oo for all §,¢ € Q2 so Eg ¢[¢p(X)] is continuous.
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Step 2: Write Q = {q¢(z) = po,.c(z) : (60,¢) € Q). So, ge(z) = ¢ V@=A00.00T @) p(3). Q is a full-
rank one-parameter exponential family with an open parameter space, so U(X) is a complete sufficient
statistic for Q. Define f(u) = Eg,[¢(X) | U(X) = u]. Then, (0, () = Eg, ¢[f(U(X))]. If (60,¢) = @
for all ¢, then f(U(X))* a. Thus, #(X) has conditional level a on w.

Step 8: For 0 > 0,

Eo,c[¢(X)] = Eo ¢ [Eo(4(X) | U(X))]
< Eg ¢ [Eo(¢*(X) | U(X))]
= Eg,¢[¢"(X)]

ii.d

Example 16.3. Let X1,..., X, "~ N(u,0?) with 02 > 0 unknown and test Hg : o < 0.

RS 1 ¢ o np’
257 2 T 5
- .

Pu,o2(T) = eXp(

0-2
12
9 = ;7
n
TX) =S X,
=1
1
<: _20_27

Condition on U = || X||2. The distribution of X (under p = 0) is Uniform(sphere of radius || X||2).

2
po(z | ll2]l3 = u) oce /70 1{ ]|} = u}

The optimal test rejects when

is large given || X||2, or equivalently, rejects when X /|| X||2 is large given || X |2, but this test statistic

_ {lelB=u}
vol([[z]1257~1)

X:%ZXZ»

=1

does not depend on || X||2. So, equivalently, the test rejects when

X

X

VS /n ~ IX[E—nX?)/n

is large, where

n

§2 =) (X; - X)?

i=1
= | X[5 — nX>.

%)

Rejecting when T'(X) is large given U(X) is equivalent to rejecting f(T(X),U(X)) is large given U(X) if f
is strictly increasing in the first argument. “Reject when T'(X) is large/extreme given U(X)” <= “reject

when f(T(X),U(X)) is large/extreme given U(X)” if f(¢,u) is strictly increasing in ¢ for each fixed w.
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17.1 L-Unbiased Decision Rules
§ is L-unbiased if Eg,[L(6y,5(X))] < Eg,[L(0,6(X))], e.g., if L(A,d) = (8 —d)*, then we recover the

definition of an unbiased estimator. As another example, we can take L(0,d) = 1{60 ¢ d}.

17.2 Conditioning on Null Sufficient Statistics

We have been discussing exponential families with densities pg ¢ (z) = /T @)+ U@ =AOOp(3) where § € R,
e Rsil, and Hy : 0 = 6.

Example 17.1. Let X ~ N, (u,0%1,), Y ~ N, (0,021,,). Test Hy : = 0 versus Hy : pu # 0, where
02 > 0 is unknown. Then,

(m+n)/2

MNae—wll? o2)— 2 o2 1

Doz (,y) = e~ l=#l? /o= lwl*/ 2 )(27102)

m+n)/2

:e(u/cr?fm—(nzn2+\|y\|’-’>/<2a2>—uun?/(za?)(L)( /
2102

m+n)/2

:eeTT(z>—<U<w,y>—uuu2/<2a2>( 1 )( )/,
2102

Here, 8 € R™, ¢ € R.
X Ho : n+m—1
v | U ~ Uniform(VUS )
L
VU Y

Choose some test statistic (a notion of X being “big”). If R = || X|?, then reject when || X||? is large
given U, or equivalently, reject when || X||/v/U is large, or equivalently reject for large

] % Uniform(S™t™~1).

X1

— = _p
X112+ [1Y]2

Under Hy),

||X||2 ~ 02xi = Gamma(%,?az),

56
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which is independent of

SO
5k Beta(ﬁ, —)
Then,
n
Bli= o
Equivalently, reject for large
X 2
X
[Y[|2/m
IfV~x2 AL W ~ x3, then
V/a
~ Fyp.
W/b L

For large n, m, the statistic is ~ 1.

Example 17.2 (Non-Parametric 2-Sample Testing). Let Xi,..., X, g P, Yy,....Y, L Q. Test

Hy: P=Q versus Hy : P # Q. Under Hy, P = @Q so (X,Y) is an i.i.d. sample from P of size n + m.
Let Z = (X,Y), that is:

X; 1<n
Zi: (2] ‘_
Yion, i>n

Then U(AX7 Y) = (Z(l), ceey Z(n+m))~ AISO7

(X,Y) | UX,Y) (o Uniform{nZ : 7 is a permutation on (1,...,n+ m)}.

Choose any test statistic T(X,Y), e.g., T(X,Y) = |X — Y], or

n

T(X,Y) = ‘% 3 rank(X;) % S rank(Y;)

i=1 i=1

where rank(Z(y)) = k. Reject when T'(X,Y") is (conditionally) large.

17.2.1 “Toy” Linear Model

Let
A H1
Zo NNg( U2 ,0’2I3>.
Zs 0

02 is unknown. Test Hy : po = 0 versus Hy : o # 0.

3/2

—|lz—pll?/ (262 1
raga(2) = et (L)
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H2 M1 1
X, exp{ﬁzg + 2 ﬁHsz}

Condition on U = (Z1, || Z||?). Equivalently, condition on
R2
—

Note that (Z3, Z3) 1L Z;. Conditional on U, Z & Uniform((Z1,0,0) + RS!). Reject when |Zs] is large. If
p2 > 0, then Z2 > Z2. In this case, Z ~ (Z1, R,0). If uz < 0, then Z ~ (Z;,—R,0). Rejecting when |Zs|

is large is equivalent to rejecting when Z2/Z2 % F ; is large.
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18.1 Testing in the General Linear Model

18.1.1 Review

Example 18.1. If X ~ N,,(i1,0%1,,), Y ~ Np(0,0%L,) (X UL Y), Hy: u =0, Hy : u # 0, and o2 is
unknown, then under Hy, || X||3 ~ o2x2, ||V |3 ~ 0?x2,. Also,

X113 nom

CXIB (™,

X103 + Y113 272
IX13/n

i~ 5
Y3/m ="

We can think of

Y 2
o _ IYIB
m
If o2 is known, then we would use
IXI3/n
o2 n’

Under Hy,

X o (L1
o2 "\ g2 )

Example 18.2. For
Z P
Z2 ~ N( H2 | » 02]3) 3

Hozugzo,leug;éO,then

59
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18.1.2 General Linear Model

Basic setup. Observe Y ~ N,,(0,021,), where o > 0 is possibly unknown. The models/null hypotheses are
framed in terms of linear constraints on 8 € R™. P puts § € O, for some d-dimensional affine space, and
Hy: 0 € ©9 C ©, where O is a dyg-dimensional affine space.

Example 18.3 (One-Sample Testing). Y7,...,Y, . N (u,0?%), where p € R, or equivalently we have
Y ~ N, (ul,,0%1,), where

1, = |:
1

Let 0 = pl,,. Test Hy: p=0vs. Hy : p # 0. Here, ©® = 1,R, with d = 1, and ©¢ = {0}, with dy = 0.

Example 18.4 (k-Way ANOVA). Let Y;; ~ N(pj,0%), for j = 1,...,k and ¢ = 1,...,n;. Test
k
Ho:pr = =pg Let ny =370 ny.

Yi1
}/1,1'7,1
Yo )
V= : ~ Ny, (6,0°1,,)
}/2,1'7,2
_Yk,’ﬂk_
and
]
H1
K2
o= € R™+.
2
Kk
LAtk |
Then,
1n1 On1 O’I’Ll
0 1
@:span{ 72 5 " e }
: : Oy
0, O, Loy,
with dim © = k. Then, ©¢ = span1,,, and dim ©q = 1.
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Example 18.5 (Linear Regression). Let X € R"? d < n, and X has full column rank. Then,
Y; ~ N (2] B,02), where 2] is the ith row of X, and thus Y ~ N(XS3,02%I,). Test the null hypothesis
Hy : Bag—s41 = Pa—st2 = -+ = Ba = 0 (s of them). Here, ©® = span X, ©g = span X;,4_s), and
do =d-—s.

This example subsumes the previous examples. For one-sample testing, take X = 1,,, s = 1. For k-way
ANOVA,

1n1 On1
X (1 Ons ' )
= ni s . ) ’
: lgpn o
0 (0
Here s =k — 1 and
M
H1 — Mk
0= .
Hek—1 — Kk

18.1.3 General Strategy
Rotate Y via an orthogonal matrix @ € R™*™.
Q=[Q Q1 Q]

where Qo € R"*% is a basis for Oy, Q; € R"*(¢=40) i5 a basis for © N Of, and Q, € R"*(n=d) ig 4 basis for
©1. Then, let

Zy QL0 2
Zi | =Z2=Q"Y NN( QTo ,O—m) =Nn( v ,UQIn).
Z, Qo Uy

So,
vo = QJ6 € R,
v =Q19 e R = R?,
v, =Ql e R4
The model puts 6 € O, or equivalently, v, = 0. Then, Hy puts 8 € O, or equivalently, 4, = v, = 0.

‘ Hy H,y
Vo | any € R% any € R%
2 0d—d, # 0d—d,

Uy On_d On—d
Here, Hy : v1 = 0.
02 known: If s =1, then
2 (20)
o o
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This is the Z-test. If s > 1,

HZ1||% Ho 2
o2 s
o2 unknown: Let
AL
n—d’
For s =1,
Z
Al HS] tnfd
o
For s > 1,
Z113/s o
% 9 B
o
Equivalently,

12113 s n—d
—_———— o~ Beta(f,i).
121113 + 1 Z: |13 27 2

For one-sample testing,

1
Jn

Qo =2, Q1= 1., Q, = completion to R".

For regression with s = 1, X € R™*? and Hy: 3 =0, dg = d — 1, then Y ~ N, (Xf,021,), and

Q :{ X1 Xo. 1 Xa—1,1 }
T IIXllz X212 [ Xa-1,1[2

where Xj 1 =70, v, X = (= Qo1i-1)Q01:j—1)) K-

Xa, 1 ]
[ Xa, 12

and @, is the completion to R™. Then, || Z||3 = |V |3 — | Zol|3 — || Z1]|3. Also,

o-|

XJ’LY

Z) = ———.
P XLl

We can also write
Y
2 2
HZY||2 = HY - WspanXYHQ
= RSS

- an(m ~ V)2

62
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19.1 Motivation for Large-Sample Theory

Example 19.1. Suppose X ~ Binomial(n, 8), and n = 2000. We want a CI for §. We can use

X ~ N (nb,nd(1 —0))

m/\f(n@mif(l = f)),

X n0,1).

X(1— X/n)

Then,

X \/(X/n)(l — X/n)

Cl= *iza/z
n n

Unless X/n =~ 0 or 1, the answer is approximately the same as the exact CIL.

Example 19.2. Let X; £ pg for i = 1,...,n for a “generic” py (under conditions). The MLE gives

the approximately optimal estimator. Tests and confidence intervals which are based on the likelihood
are approximately optimal.

19.2 Convergence in Probability

Definition 19.3. A sequence of random variables X7, X5,... converges in probability to X if, for
all e >0, P(|X,, — X| > ¢) — 0. This is written as X, 5x.

Usually X = ¢ € R (constant).

Proposition 19.4 (Chebyshev). For any random variable X, constant a > 0,

E[X?]

P(X|>a) < =

63
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Proof. Since

a.s. X2
take expectations.
Corollary 19.5.

var X

P(X - E[X]| > o) < 2

a

Corollary 19.6. IfE[X,] =0 for all n and var X,, — 0, then X, 5o

More generally, convergence in probability is defined as P(||X,, — X|| > &) — 0 for all € > 0.

4.49.d

Proposition 19.7. Suppose X1, Xa,... ~ P, E[X;] = u, var X; = 2. Then,

— 1 &
Xo==> Xi5p
ni=
Proof. E[X,] = p for all n, and
2
var X, = 7 — 0.
n

Proposition 19.8 (Continuous Mapping Theorem). If f is continuous at ¢ and X, L c, then

F(X0) 5 f(e).

Proof. Fix € > 0. There exists d(¢) > 0 with |X,, — ] < d(e) = |f(Xn) — f(o)] < e

P(|f(Xn) = f(e)] > &) S P(|Xn — ¢[ > 4(¢)) = 0.

. P,
Notation: — means convergence under 6.

Definition 19.9. A sequence of estimators d,, (X (™) for n > 1 is consistent for g(6) if

5. (X™) 22 g(0), voecO.

64

Recall that MSE(#,d,,) = (biasg 6,,(X™))? + varg 6, (X (™). If biasg 6,(X™) — 0 and vary 6, (X™) — 0,

then MSE(0, 6,,) — 0.

MSE(b, 6,
P(|6,(X™) = 6] > ¢) < 5(72) —0, Ve>0.
Let 0,,(X™) = g(0) + B,k,, where B,, ~ Bernoulli(r,) and 7, — 0. If we take
1
kn =
Tn

then biasg 8, (X (™) = 1 for all n. For ¢ > 0,
P(|dn(X ™) = g(60)] > €) <P(3n(X™) # g(9))

= Tp.
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19.3 Convergence in Distribution

(a.k.a. weak convergence)

Example 19.10.

X Py

)

for the binomial example. X ~ N (nf,nf(1 — 6)) is a much more precise and useful statement.

Definition 19.11. A sequence of random variables X, X5, ... converges in distribution to a RV
X with CDF F if F,(z) == F(z) for all z such that F is continuous at z. Notation: X, = X or

X, S Xor X, S For X, 3 NO,1).

Theorem 19.12. X,, = X iff E[f(X,,)] — E[f(X)] for all bounded continuous f.

This definition generalizes to vectors, matrices, ...

Corollary 19.13. If g is continuous and X,, = X, then g(X,,) = g(X).

Proof. If f is bounded and continuous, then f o g is bounded and continuous, so

E[f(9(Xn)] = E[f(9(X))]-

Theorem 19.14 (CLT). If X; ~ (u,0?) [notation: E[X;] = u, var X; = 02/ and

_ 1 &
angi;Xi,

then /n(X,, — u) = N(0,02).

Less formal:

Theorem 19.15 (Slutsky). If X, = X, Y, 5 ¢, then:
e X, +Y,=X+¢;
e XY, = cX;
e X,,/Y, = X/cifc#0.

ool

Example 19.16. X,, ~ Binomial(n, ). Write X,, = " | B; where By, Bs,... "~ Bernoulli(d). Here,

B; ~ (0,6(1 —0)). The estimator is

o= Xn.
n

The LLN 19.7 implies § — 6. The CLT 19.14 implies vn(d —6) L N(0,6(1 — 6)). If we combine the
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LLN 19.7, the CLT 19.14, and Slutsky’s Theorem 19.15,

Then, our confidence interval is

Thus,

P0<9>9+2a/20(1_0)> :P9<W>za/2>

0(1 — 6)
Q

19.3.1 Delta Method

Theorem 19.17 (Delta Method). If /n(X, — p) = N(0,02), and f is differentiable at p, then
Va(f(Xn) = f(w) = N(0, 02 f'(1)?).

Proof. f(Xn) = f(u) + f'(0)(Xn — 1) + o(Xn — 1), s0

Vi (f(Xn) = f(1) = ' (WVn(Xn = 1) + vno(Xn — p)

=N (0,02 f/(11)?)

20

= N (0,0 f'(1)?). O
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20.1 Maximum Likelihood Estimation

For a generic dominated family P = {py : 6 € O}, the maximum likelihood estimator (MLE) is
OnLe(X) = arg max py(X)
[4<IC]

= arg max £(0; X).
0cO

Remark 1. The maximizer may not exist, or be unique. It may not be computable.

Remark 2: The MLE of ¢(0) is g(OyLg).

Example 20.1.

Set V/Z =10 so

If there exists n € = with E,[T'(X)] = T'(X), then it is the MLE, since
V2U(n; X) = —V2A(n) = — var, T(X)

is negative-definite, unless there exists v with vTT/(X) P250. If the family is not overparameterized,

then we can define the inverse of u(n) = VA(n) as ¥ = u=1, so aymee = ¢(T).

Example 20.2. Let Xq,...,X, R Poisson (), Eg[X;] = varg X; = 6. The sufficient statistic is

T(X)= Z?:l X;. Then, we take

Ovre = % Z X;
=il

varg X¢>

z/\/(ﬂ,

67
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:N(a, %)

since Eg[T] = nf. More rigorously, v/n(6 — 6) = N(0,6). The natural parameter is 7 = log 6, so

n

vLe(X) = IOg(% ZXz)

Note: For all finite n, 6 > 0,

Py (iine = —00) = Py(X; = 0)" = e~ > 0.

Example 20.3 (General One-Parameter Exponential Family). Let X; g e"T(@) =AM (1), with one
parameter n € Z C R. Here, u(n) = A'(n) = E,[T(X)] is the mean parameter for X;. Then, X =
(X1,...,X,) is an exponential family with natural parameter 7, sufficient statistic Y., T(X;), and
mean parameter nu(n). Then,

Asymptotically,
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20.2 Asymptotic Relative Efficiency
Previously, we compared estimators via, e.g., MSE, but for any Gaussian estimators, more “concrete” com-

parisons are possible.

Definition 20.4. Suppose 1), ) are asymptotically normal with /n(0® — 0) = N(0,02). The
asymptotic relative efficiency (ARE) of §(?) with respect to () is o7 /073.

Example 20.5. If 03 = 207, then we say 6 is 50% as efficient as (1),

Interpretation. For large n, if

2
01
72:’7<17
03

then

2 OO(X, ., X )
N (0. 70) = (0. %),

Q

Asymptotically, using 6 instead of () is equivalent to throwing away a 1 — ~ fraction of the data.

Example 20.6 (Sample Median vs. Sample Mean). Let Xy,..., X, E f(z—0) be symmetric. Keener

8.4 shows that if X, is the sample median, then

Vi Xn —0) = N(o, ﬁ)

Vn(X, —0) = N(0,var X1).
Gaussian: Let X; "5 N (0, 02).

4f(02 ~ 4(1/(2n0?))

var X; = o2,

)

1 1 o’m
2

so the median is 2/7 ~ 64% as efficient.

Laplace: If

iid.
X; '~

1
o lzl/o
2ae
then

1 1 %

47(0) ~ 4(1/(402)) 7"

var X; = 202,

so the mean is 02 /(202) ~ 50% as efficient.
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21.1 Asymptotic Distribution of the MLE

i.i.

Setting: Xq,..., X, L "pe, “smooth” in 6. Let ¢1(0; X;) = logpe(X;) and

J1(0) = varg V41 (0; X7)
= —Eqg[V241(0; X1)],
J(0) = varg VL(0; X1, ..., Xp)
= nJl(H)

Recall that Eg[V£(6; X)] = 0. We say that an estimator 6, is asymptotically efficient if
Vn(0, —0) = N(0,J1(0)7").
Today, we will see that under general conditions, v/n (e — 0) = N(0,.J;(6)~1). Also,

Vi (g(buwe) — g(0)) = N (0,Vg(0)TJ1(0) "' Vg(6))

(if ¢ is differentiable).
“Proof” in One Dimension. Let 6y denote the true value.

1
Tl 00X Ze' fo; X
Lo, N (0, J1(60))
(by the CLT 19.14). Also,
(005 X) 7 7100
(by the LLN 19.7). Then,
0=20(6;X)
= 0'(00; X) + (8 — 80)¢" (80) + 0(|1 — 6o]),

5 ~ /)l (6o; X)
VIO =00~ e X

70
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P P
Since the numerator =% A/(0, J;(fy)) and the denominator — .J; (6), then
V(0 — 80) = N (0, J1(6) 7). O
Remark 1. We need the MLE to be consistent.

Remark 2: We need the second derivative to have finite expectation near 6.

21.2 Asymptotic Distribution of the MLE, Take 2

Theorem 21.1 (Keener Theorem 9.14). Setup: X;,..., X, 5 pe are from a dominated family
P={py|6c6CR}

1. Twice-differentiable log-likelihood: For all 0 € ©, for all x € X, po(z) > 0 and £(0;x) has two
continuous derivatives.

2. Fisher information: Eg[¢'(0; X)] = 0 and varg ¢'(0; X) = —Eg[¢"(0; X)] € (0, 00).

3. “Tame” second derivative (locally): For all § € ©°, there exists € > 0 such that

Eg[ sup €} (0; X)|| < oo.
0c[0—e,0+¢]

4. The MLFE is consistent.
Then, for all 0 € ©°, /n(0 — 0) = N(0, J1(0)1).

Lemma 21.2. Suppose X,, = X and P(B,) — 1 as n — co. Then, for arbitrary random variables Z,,
n>1,Y,=X,1p, +Z,1pc = X.

Proof. Fix e > 0. P(|Z, 1| > ¢) < P(By,) — 0. Also, P(|1p, —1| > ¢) < P(By,) — 0. Apply Slutsky’s
Theorem 19.15. O

Proof of 21.1. Fix 6y € ©°, choose € > 0 for which
(a) [fo —¢,00+¢] € ©° and
(b) Elsupgeig,_c.6111¢" (6 X)) < 00 by 3.
Let B, = {|0,, — 6| < €}. Then, P(B,) — 1 by 4. On B,,, we have
0=0'(Bn; X) = 0(00; X) + (8 — 00)¢" (05 X)
for some 6, between [0, 6,,]. Hence,

A _ (1/v/n)l(80; X)
Vb, —6y) = ) (B X)

P, P, ~ P
and the numerator — N(0,J1(6p)). We want the denominator 2, J1(6p). If 0, 2, 0, then
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~ Py .. .
0, — 6o also. This implies

1
(B3 X) = Eo, [£] (603 X1)]

(for reasons we will defer until next time). The behavior on B¢ does not affect the limit.

21.2.1 Dimension d > 1

%Vﬂ(@o; X) LY N (0, J1(60)),

1
——V20(60; X) ooy 70(6),

0 = VU(0o; X) + V2U(00: X) (6, — g) + 0o(||6n — bo]]),

. 1 -1
\/ﬁ(gn_go) ~ (_EV2£(00;X)) %VE(%;XW
N— —
—20, 7,.(60) 22 (0.1 (60))

Example 21.3 (Gaussian). Let Xi,..., X, g N (6g,1). Then,

0(6; X) = 1og{ (\/%)”ef zz;axi—eﬁ/z}

= 62 X||2
=nX,0 — o Elog(27() _ IXT
2 2 2

£(6:X) = (X, ~ 6) ~ N(0,m),
£'(6;X) = —n = —n5(0)
), gy = QYD X)
\/ﬁ<§”/ )= (1m0 X)

n

)

~ N(0,1)

since the numerator is ~ A/(0,1) and the denominator is 1.
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November 7

22.1 Consistency of MLE

Last time, we needed

1 ~ 1
(03 X) 2 B, [~ 0" (00 X)] = T(00).
n n

~ Py,
We had 0,, — 0y and
1 P
——0"(00; X) —> J(6).
n
Setup: X1,...,X, L po, for Oy € ©. Note that £,,(0; X) =Y. logpe(X) and 0, = arg maxgycg fn (6; X).

- Py,
We want 6, — 0.

Recall the Kullback-Leibler divergence

_ p U(Xl)
D (6o || 0) = Eq, [log p"e(xl) }

Then,

—Dxr(bo || 0) < log Eq, {;?: (())((11))]

<log / P9 ey dis
{z:po, (z)>0} Do,

<logl=0.

Also, —Dkr.(6o || 8) < 0 unless pg = py, (unless Py = Py,). If P is identifiable (all Py are distinct), then
Dk (0o || 0) > 0 if 6 # 0y. Write

Wn(e) = (gn(97X) _Kn(emX))

iﬁl(G;Xi) - %i&(ao;)ﬁ'),
Eo, Wo(®) = —Din(bo | 6).

Sl 3=

Game Plan
P,
1. We want supgee | Wi (0) — Eg, [W, (0)]] —2 0.
2. Prove consistency for compact ©.

3. Generalize to non-compact ©.
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22.2 Uniform Convergence of Random Functions (Stochastic Pro-
cesses)

For a compact set K, let C(K) = {f : K — R : f continuous}. For f € C(K), let || f|loc = sup,cx|f(t)]. We
say fn = fin ||']lec if ||fn — flloo = O (uniform convergence).

Lemma 22.1 (Lemma 9.1 (Keener)). Let W € C(K) be random with E[|W o] < oo, then E[W (¢)] is
continuous in t and sup,e g E[sup,,s_¢j<c|W(s) = W(#)[] = 0 ase ] 0.

Theorem 22.2 (Weak Law). Let Wi, Ws, ... be in C(K), where K is compact. Let p(t) = E[W(¢)].
Assume E[||W||oo] < 00. Let

_ 1 &
Then, |[W,, — 1l 50asn— oo

Theorem 22.3 (Theorem 9.4 (Keener)). Let Gy, n > 1, be random functions in C(K), K is compact,
and g be a fized function in C(X) with |G — gl Lo.

1. Ift, 5 t* € K, where t* is fized, then G (tn) LN g(t*).

2. If g is maximized at a unique value t* and t,, mazimizes Gy, then t, B

3. If K CR and g(t) = 0 has a unique solution t*, and t, solves Gy (t,) =0, then t, 5o

Proof. 1.

|Gn(tn) - g(t*)| < |Gn(tn) - g(tn)‘ + |g(tn) - g(t*)|
< IGn = glloo + |9(tn) — g(t")] .

20 5o

(This completes the proof from last time.)

2. Fix e > 0 and let K. = K \ B:(t*). K. is compact. Let

M = g(t") = sup g(2),

te K
M, = sup g(t) < M.
teK,
Define 6 = M — M, > 0. If
1)
1Gr = gllo < bR
then
N 0
sup G, (t) > Gp(t*) > M — —,
teK 2
0 1)
sup Gp(t) < Mc+ - =M — —.
teK. 2 2
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So,

P(tn € Be(t")) > P(|Gn — glleo < 9)
— 1.

3. The proof is similar to 2.
O

Theorem 22.4. If © is compact, Eg,[||[W1|leo] < 00 and logpg(x) is continuous in 0 for a.e. x, and
~ P, ~
Py # Py, for all 6 # 6y, then 6,, — 0y if 6, € argmax,cg £(6; X).

Proof. Let

The W; are i.i.d. in C(0). The mean is

w(0) = Eq, [W3(0)]
= —Dkur(6o || 0).

Since p(6p) = 0 and p(f) < 0 for all 6 # O, then p has a unique maximizer 6y. 6,, maximizes

_ 1 &
Wn:ﬁ;Wi.

So, [Wh — ptllso B by the Weak Law 22.2. Apply 22.3, 2. O

As an example of why uniform convergence is important, consider K = [0, 1], g(¢) = ¢t (maximized at ¢t = 1),
and

Gn(t) = g(t) + ]l{|t U, < %}

where U,, ~ Uniform[0, 1]. Then,

Here, P(|t,, —t*| < €) — €. However,

P(Gn(t) # g(t) <

2
n

Theorem 22.5. Suppose © = RY, py(z) is continuous in 0 for a.e. x, Py, # Py, for all 01 # 0o, and
for all z, pg(xz) — 0 as 0 — oco. If

o Eg[l|lx Willoo] < 00 for all compact K,

o Eg,[supjg>q Wi(0)] < oo for some a > 0,

A~ P90
then 0, — 0.
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November 9

23.1 Finish MLE Consistency

Compact O: If O is compact, Eg[||W]|e] < 00, pg(x) is continuous in 0 for a.e. z, and Py # Py, for all
. P
0 + 0o, then 0, — 6.

Theorem: Consistency of MLE. If © = R?, 0, € arg maxgeg ln(6; X), po(x) is continuous in 6 for a.e.
and pg(z) — 0 as |0 — oo, Eg, [||1x Wi|le] < 0o for all K C RY compact, where

Wi(0) = £1(0; X;) — £1(60; X),

— 1 &
.0 - L3 W),
i=1
~ P,
and Eg, [supjjg)>, W1(0)] < oo for some a > 0, then 8,, — o.

Proof of 22.5. pg — 0 as [|0]| — oo, so supjjgj~, W1(f) = —o0 as b — co. By Dominated Convergence,
Eg, [supjg>p W1(#)] — —oo. Choose b for which Eg, [sup|g|~, W1(0)] < —d for some 6 > 0. Note that
Eg, [W1(6o)] = 0 so ||fg]| < b. Define
0,, = arg max W, (6)
llol<e

Py
0 00

(since Ky = {]|0]| < b} is compact). Then,

n

1
sup Wo(0) <=3 sup Wi(6)

llef>b n oz lel>b
Py
— 0520

So,

gIP’(sup W, > —

76
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Example 23.1. Let Xq,..., X, = po(x) = po(x — 0) for 6 € R. Assume:

e py is continuous and bounded (sup,cg po(z) = R < 00),
e po(xz) = 0 as & — Fo0,
o [[logpo(z)|po(x) dz < cc.

Then,

pO(X—H)
Eo, |sup W1(0)| = Eg, |suplog ———+~
’ Leﬁ i )} ¢ [Geg gPO(X*QO)}

= log R — g, [log po(X — 69)]

=log R — Eo[log po(X)]

g R— / (log po())po(a) dz
R

< 0.

23.2 Likelihood-Based Tests

23.2.1 Multidimensional MLE Distribution

Setup: X1,...,X, L Pg,, where 0 € © C R? is unknown.

e py is “smooth” in § (e.g., twice continuously differentiable).

. Py,
° QMLE — 90.

e Oy € O°,

Expanding around 6,

0= V{(0,;X)
~ VI(0o; X) 4+ V2E(00; X) (0, — 60y),
A 1o ) el )
Vn(fn — o) ~ (‘ﬁv 5(90,X)) (%VMGO,X))
— —_———
511 (80) %N(O,Jl(ao))

P% ./\/(0, J1(90)_1).

23.2.2 Wald-Type Confidence Regions/Tests

If
1. P
ﬁJn & Jl(go) - O,

then jyl/z(én —0o) Lo, N(0,1). So, ||j71/2(én —6o) |13 Loy, X3. We can reject Hy : 0 = 0y if

1737205 = 00) 13 > xa().
We can also construct a confidence region:

T2, — 0)|12 < ¢ <= JY2(B, — 6) € /eB1(0)

7



LECTURE 23. NOVEMBER 9 78

= 0€b,+ el V2B (0).

Popular choices:

Jn = nJy(0,) = nvarg V(0; X)|
Iy =

9’7l
—V2(0,; X).
The second estimator is usually preferred, since it takes into account how informative the actual dataset is.
Conditionality Principle: Flip a coin; with probability 1/2, X ~ N (u,1) (Z = 1), and with probability
1/2, X ~ N(11,9) (Z =2). Test Ho : p = 0. A natural idea would be: if Z = 1, reject if | X| > z,/9, and if

Z = 2, reject if | X| > 32,/2. This is not the same as the Neyman-Pearson test. The Conditionality Principle
says that we should condition on whatever information is available.

Example 23.2 (Logistic Regression). Suppose

Bz
e
P(ti=1|X;=2) = T

for x € R<.

1. Solve numerically for B = arg maxgega £(3; X,Y).

2. Find J~1 = (=V24(3; X,Y))" .
Since 3 ~ B+N(0,J1), the confidence region for § is f-++/cJ~1/2B1(0). Also, B; ~ B;+N (0, (J1); ),
so the interval is 8; € B; + 1/ (j_l)jJZa/Q. Note that \/c scales as v/d.

If S C [d], write J=! = 5, and then 8g € , /stl(a)(ig,s)1/2 + B, and the constant in front now scales
as /|S|.
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November 14

24.1 Score Test/Region

24.1.1 Wald
If

jl i) J1(90) =0
S92, P
then v/nJl/ (0, — o) == Ny(0, I,).
Test: ||v/nJi (0, — 00)]12 Lo, X2, so we use the region 8y € 6, + \/Xfl(a)jl_l/zn_l/zBl(O).

0,
Some choices for Jy are Ji(,) and —n = V20, (0,: X1,..., X,).

Example 24.1. Let X ~ Binomial(n, 6), so

and

So,

For a = 0.05, the interval becomes

where
§]\E é én(l - én)
(6 = ="
Thus, the interval is approximately
A 1 1 1 1
0+1.96— - = —+1.96—
vn o Jnooon n

79
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which falls outside of the parameter space.

24.1.2 Score Test

1 P,
WVEH(HO;XM PN ,Xn) % Nd(O, J1(90))
Reject Hy : 0 = 6 if

2

Hle )V20, (B0; X1, - .., Xon) > xala).

Example 24.2 (Exponential Family). Let X;,..., X, N pn(z) = e”TT(”)_A(”)h(a:). Then,

Ve X) = (T(X:) — Ey[T(X1)]),
i=1
Ji(n) = var, T(X1) = V2A(n).

Reject if (323, (T(X:) — p(m)T (nV2A(0)) ™ (71 (T(X3) — p(n))) > xi()-

Example 24.3 (Pearson’s x? Test). Let

(N1,...,Ng) ~ Multinomial( (71'1, . ,7rd))
_ _Ni, { N, = }
= oy g n
1 d ?\71 —

Test Hy : 7 = 79 (note the constraint 2?21 m; = 1). The test statistic is
d

L nﬂ(o))2 P 5
Z = Xd-1-
i=1

This is a score test.

24.2 Generalized Likelihood Ratio Test/Region

Expand ¢ around 0.

Cn(00; X1, .o, X)) — o (On; X1, .., X,)

~ ~ 1 ~ ~ ~
~ V(0 Xy X) (00 — 0,) + 5(eo —0,) "V, (0, X1, ..., X)) (00 — 6,),

Q(En(éle, ce ,Xn) - én(QOQ Xq,... 7Xn)) ~ (\/ﬁ(én - 00))T (—%V%(én; Xi,... 7Xn)) (\/ﬁ(én - 90))

SO

—_—

P

%N(O,Jl(eo)*l) Pim(eo)
Py 2

= X2
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24.2.1 Generalized LRT with Nuisance Parameters

Test Hy : 0 € O vs. Hy : 0 € ©\ 0y. The GLRT statistic is G2 = 2(£y, (0p; X1, ..., Xn) —ln(00; X1,. .., X,))
where 0y € argmaxycg, ln(0; X1,...,X,). If O is a do-dimensional manifold in ©, and 6y € (relint ©9) NO°

A P90 . e . .. 2 Py 2 .
and 6, —= 6, with additional regularity conditions, then G2 =% x3_ d4o- Asymptotically near ©p, we have
0,(0; X Xn) ~ (00 X Xo) Sl (00) 20 — 0,)2
n(a 1y-ens n)’“ n( my Ly n)+2” n( 0) ( n)”Q
Assume that we have parameterized the problem so J;(6y) = id. Then,

0o ~ argmin||f — 6,||2 = projectiong (0,).
€00

So, the GLRT = ||0,, — projectioneo(én)\\g R XTIy
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November 16

25.1 Plug-In Estimators, Bootstrap

Example 25.1. We observe X1,..., X, s P, where the X; € R. We want to estimate the median

O(P). The “obvious estimator” (for n odd) is 6,, = X((nt1)/2) = 0(P,). This is a “plug-in estimator”.
Here, P, is the empirical distribution n=' Y7 dx, (d, is the point mass at z).

Questions: What is varp én? biasp én?

We know that as n — oo,
) » 1
P,) —0(P .
Va(6(Py) - 6(P)) £ N (0 4p(9(P))2)
(assuming p(0(P)) > 0, where p is the density for P).
e We do not know if P has a density, or if p(6(P)) > 0.

e This answer could be “very” asymptotic.

We want to estimate 02(P) = varp 0,. A natural estimator is
6-1?7, =0’ (Fn)

=varp 6(X").
We are “integrating” over possible samples X7, ..., X} R P,. For fixed A, Pn(A) 2% P(A).
1. Forb=1,...,B (=200):
(a) Sample X;°, ..., Xt from the original data set with replacement.
(b) Compute %0 = (X;°,..., X5b).
Then,

|

1 B
S ST
b=1

1 B
A2 Ax,b _ p*\2
Un—r;(a —-6)

[t

B—oo A *
—— varp 0(X7).
Similarly, Bn =0 - én is the bootstrap estimate of the bias.
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25.1.1 Bias Correction
bias 0, = biasp 0(X*)
=Ep [0(X") - 0(Py))-

Thus, we can use

6, =0, — biasp 6(X*)
as a substitute for the ideal estimator

0, = én — biasp én
25.1.2 Bootstrapping for the Maximum

Let M(X) = X(,). Assume P is continuous so there are no ties. Let X} Ny P,,. Then,

P(M(X*) = M(X)) = 1~ B(X] # Xo)" =1~ (1- )"
~l—et
~ 63%.

25.2 Bootstrap Confidence Intervals

Bootstrap Cls start with a root R, (X,0(P)) € R. Assume the root has law

If P is known, we can use L, to get a confidence region for §: Co (X, P) = {6 : L,(R,(X,0(P)); P) <1—a}.
Then,

IP’p(O(P) € Ca(X;P)) = }P’p{Ln(Rn(X,H);P) <1- a}
<l—-«

(with equality if R, is continuous).
Example 25.2. If R, = |0,, — 0(P)|, then Co(X; P) = 0, + L;; (1 — o; P).

Example 25.3. If

then Co(X; P) = 0, + 6,L; (1 — o; P).

Example 25.4. If R, = ||6,, — 0(P)||s0, then
Co(X;P) =01 £ L (1 — s P)] x -+ x [(Bn)a £ Ly ' (1 — o P)).
Problem: We do not know P.
Solution: Use B,.

In 25.2, use C’a(X;I:’n) =0, +L;'(1—;P,). Weneed L;'(1 —a;P,) = L; (1 — o; P). Usually, we see
something like L, (r; B,) — ®(r).
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1. Forb=1,...,B:
(a) Sample X1, . Xxb0 'K p
(b) b = f(X*).
(¢) R*" = R,(X*,0(Py)).
(For example, R*? = [§(X*?) — §(P,)|.) Let r be the 1 — o quantile of {R*',..., R*B}. Then,

Ooz(X) = {0 : Rn(X’ 0) < T}'

84
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November 21

Lecturer: Xiao Li

26.1 Global Testing
Setup: X ~ Ny(0, 1), where 6 € R%. Test Hy: 60 =0 vs. 0 #0. Write X = 0 + ¢, for £ ~ Ny(0, I).
Applications:

1. detection of chemical weapons

2. detection of KBOs in the Kuiper Belt

Suppose that we observe X1,..., Xq4.

Test Statistic 1: max;—1, . q4|X;| (max test).

yeeey

Test Statistic 2: Zle X2 (x? test).

26.1.1 Power of the Max Test

Lemma 26.1.

La-2) % <1 _a < 22

2 z %

where ® is the CDF of N'(0,1) and ¢ is the density of N'(0,1).

Lemma 26.2.
max;—q.... d|X’L| P
_— 1 as d — oco.
v2logd
Proof.

IP’( maxd|X2-| < x) = O(x)?

=[1-(1-2())]

d
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0
1, <1
v2logd
— - O
0, > 1
v2logd
In comparison, if X5,..., X, are Cauchy, then
1= n Xz
max;—1,. EX I
n
where f is the density
f(z) = exp(—l) 1{z > 0}.
x
Consider the regime where §; = -~ =0, =p >0, Op 1 = -+ = 03 = 0, and k(d) = d° for some 3 € (0,1).

Theorem 26.3. Suppose p(d) = +/2rlogd, r > 0.
(a) If r > (1 — /B)?, then the power of the max test — 1.
(b) If r < (1 —\/B)?, then the power — .

Proof. max;=1, _q|X;| = max{max;—1 _x|X;|, max;—py1, . q4|X;i|}. Also,

= X 1 BT onnfls B
maX;—iq,..., k| | (\/2rlogd+\/210gkmax 1, ,kE)

>
v2logd — V2logd 2log k
g g g

P >1, ifr>(1-+/pB)?
_>\/;+\/B{<1, if r < (1-+/B)2

since

max;=1,..,k€ P

v2logk

and k = d®. So, the power of the max test is

]P’( maXd|Xi| > \/210gd(1 +0(1))) > IP’( maxk\Xi| > \/210gd(1 —|—o(1)))

i=1,..., i=1,...,

— 1

if r > (1 — y/B)%. Otherwise,

.....

< ]P(grllaxk\Xﬂ > \/2logd(1 +o(1))) +IP’( max | Xi| > /2logd(1 +o(1)))

i=k+1

—0

and
P(i:lﬂ%;_{“ Xl > /2logd(1+ 0(1))> - P(i:g&?gn Jeil > v/2logd(1+ 0(1)))
P(iznll%).c,d\eﬂ > /2logd(1 + 0(1)))

IN
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—

if r < (1—+/B)%
26.1.2 Power of the y? Test
Under Hp : 0 = 0, E[X?] = 1 and var X? = 2. By the CLT 19.14,
K
— (D X7 —d) = N(0,2).
X - )
and the cutoff is x2(a) = d + v2dz;_o + o(/d).

Under Hy, 0 # 0, so E[X?] =1+ 67 and var X? = 467 + 2. By the CLT 19.14,

d
X2~ N+ 613, 41613 + 20)

i=1

or equivalently,

\}a(ixf—d) z/\/<”\9/|§72+4”9d”3).

If ||0]|3/v/2d > 1, the power is very high. If ||0]|3/v/2d < 1, the power is ~ a. Here,

1013 _ kp?
V2d V2

since 1 =0y = -+ =6 = p.
26.1.3 Comparison of the Tests

B x? test needs max test needs
1/2 w>3 w>0.294/2logd
1/4  p>3dY%  p>0.52logd
3/4 p>3d Y% p>0.13y2logd

If B € (1/4,1/2), there is another optimal test (Donoho and Jin, 2004).
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27.1 Multiple Testing

Setup: X ~ P € P. Test Hy;, i =1,...,n. Return an accept/reject decision for each 1.

independent

Example 27.1. Let X; ~ N(pi,1) for i =1,...,n. Test Hy; : pi; =0 vs. Hy;: p; # 0.

Last time, we considered testing Hy = ﬂ?:l Hy;:p=0.

Example 27.2. Let p; € [0,1], ¢ = 1,...,n. Test Ho; : p; ~ Uniform[0,1] vs. Hy; : p; is not larger
than Uniform|0, 1].

GWAS: There is a 2 x 2 table for each of n SNPs.

diseased | controls

wild-type
mutant

Basic problem: Observe X, return a set S(X) C {1,...,n} of rejections.

Variants of the decision problem:
1. Look at the best (largest) X;, test whether it is actually the best y;.
2. Look at the best X;, return a confidence interval for only the mean corresponding to X(i).
3. Return a CI for every p;.
4. Return a CI for u; through p;.

5. Return intervals for ps(x)-

“Bad” things happen if we do not correct for multiplicity.

Example 27.3. Suppose that in the independent Gaussian example, p; = 0, for all ¢, and test all Hy ;
at level a. E[#rejections] = an, so P(at least 1 false rejection) ——— 1.

27.2 Familywise Error Rate (FWER)

Classic Proposal (Pre-1995): Control the FWER (familywise error rate), i.e.,
FWER = P(make at least 1 type I error).
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In multiple testing,

FWER = sup Pp(any true Hy; is rejected)
pPecP

= sup Pp(%o(P) OS(X) 7é @),
PeP

where Ho(P) = {i : Hy; is true} and S(X) = {i : Ho, is rejected}.

27.2.1 Bonferroni Correction

Reject Hy ; iff

3|e

Then,

P(any false rejections) = P( U {Hy,; rejected})
i€Ho

< Z P(Hy,; rejected)
1€Ho

@
< |Ho|—
n
< a.
If p1,...,pn are known to be independent, we can do a bit better.
Sidak’s Correction: Reject Hy ; if p; < &y, where
p=1—(1—a)'/"
@
~— for large n.
n

Now, FWER = « if all Hy; are true and the p-values are independent and uniform.

27.2.2 Correlated Test Statistics

ind dent
independen N(

Example 27.4 (Pairwise Comparisons). Let X; wi, 1). Write X; = u; + &;, where

Ei 1;\51 N(O, 1)
Test Ho j : pt; = 5, for 4,5 =1,...,n. There are a total of (g) ~ n?/2 hypotheses. Since

Xi 7XJ H%’j./\/,
V2

we may reject all Hy; ; with |X; — X,;| > ﬁza/@(n)).
2

(07 ]‘)’

More powerful: reject Hy; ; if | X; — X;| > 7o, where P(max; j—1... n|€; —€;| > rq) = . Then,

P(any false rejection) = P(|X; — X;| > rq for any ¢,j with p; = p;)
< P(le; — ;| > rq for any ¢,j) = .

This is Tukey’s Honestly Significant Difference (HSD) Procedure. HSD is not much better
than Bonferroni’s correction if n is large.

g; + max (—g;)

_max |Ei—5j|:i_rrllax max
=1,... =1y

1=1,...,n \n
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= 2y/2logn(1+ 0,(1)).

So, ro & 2¢/2logn. In comparison, \/iza/(z(n)) ~ v24/2log (;‘) ~ 24/2logn. For n = 6, the difference
2

is like 4.0 vs. 4.1. The difference is more important if o2 is estimated instead of known.

Example 27.5 (Schefté’s S-Method). Test, for all linear combinations, Hy ,, : w'v=0,forallv € S" 1.
Reject Ho, when |XTv| > y,(1 — ). Why?

P(any false rejections) = P(|X v| > xn(1 — @), any v with vy = 0)

< P( max |e"v] > xn(l —
< P(max 7] > xol1 - o)
— P(llefl2 > xn(1 — @) =

Here, x»(1 — ) & y/n, which is a significant loss.

independent

More generally, let X; ~ N(ui,0?) for i =1,...,n. Test Hy, : v =0, for v € = C R". Suppose
that we have an independent estimator 6% ~ %x2 (1L €). Reject Hy,, if
Xy

&l

2> Cas

where

]P’(sup _

> ca) = Q.
VEE UHVHQ

27.3 Simultaneous ClIs & Deduced Inference

Closely related: X ~ P € P. There are many parameters of interest, 61(P),...,0,(P). Construct
Ci,...,Cy, and FWER = suppcp Pp(0; ¢ C; for any 7).

Example 27.6 (Gaussian, Unknown Variance). Suppose 0; = p;, 6; j = p; — pj, or 0, = v forv e E.
Return C, = XTv + 6||v||2co. Interpret these confidence intervals as giving a confidence region for
p € R™, defined as {p : p is covered by all C;}. Then, R(X) = {u: pu'v € C,, Vv € Z}, so

Pu(p € R(X)) =Pu(C, > pw'v, Vv € 2)

=1-—oa.

27.3.1 Deduced Intervals

We want an interval for uTv* for v* ¢ =.

Co-(X :[ inf u'v*, su Tl/*]
X0 MER(X)'u NeR(pX)M

Then,

P, (u'v" € Cpe (X)) > P, (p € R(X))

=1-a.
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28.1 False Discovery Rate

28.1.1 Motivation for FDR Control

Suppose we test 1000 hypotheses at level 0.05. We get 53 rejections. Under FWER control, we instead test
at level 0.05/1000. If instead we test 1000000 hypotheses, then FWER control tests at level 0.05/1000000,
which is unappealing.

With FDR control, we may get 530 rejections, of which 40 are false discoveries.

28.2 Benjamini-Hochberg Procedure (1995)
Recall:
Ho = {i: Hp,; is true},
S(X) ={i: Hy, is rejected}.

Define R(X) = |S(X)|, the number of rejections, and V(X) = |S(X) N Hpl, the number of false discoveries.
Define

v
ppp— ) g 121
0, V=R=
v
T RV1’

the “false discovery proportion”. Then, FDR = E[FDP].

Benjamini-Hochberg Procedure: We have p-values p1,...,pn.
1. Order the p-values. p(1) < -+ < p(y)-

2. Find

R= max{r LD < ﬂ}.

n

3. Reject H(1)7...,H(R).
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28.2.1 BH as “Empirical Bayes” Interpretation
What does

ar

have to do with FDR? Consider rejecting all H; with p; < ¢, where ¢ is fixed in [0, 1]. Define
S(X) ={i:p; <t}

Then, we can define R, = |Si|, Vi = |S; N Hop|, FDPy, etc. What is FDR;? We can estimate it from data.
We want to maximize the number of rejections, or equivalently maximize ¢, subject to

Vi
< a.
R, V1™

Problem: We cannot observe V.

Solution:
EVil =E[ Y 1{pi < 1}]
i€Ho
= Z P(p; <t)
i€Ho
= t|H0| < tn.
So,
— nt
FDP, =
T RV1
is a conservative estimator of FDP;.
BH Procedure (equivalent):
1. Find { = max{t : FDP, < at.
2. Reject H; if p; < t.
— n r
FDP, = 20 < o = p,y <
T n

It is not clear that F/D\Pf > FDP;.

28.2.2 BH Proof
Elegant proof due to Storey, Taylor, and Siegmund: FDR = E[FDP;]. We can write

Vi nt V;
FDP, = = — .
"TRVI R VI nt
——
Fop, Mt
Assume that py,...,p, are independent. For i € H, assume p; ~ Uniform[0, 1]. Define

Fe =0 ((pi)igro, (Pi V t)iers)-

If s <t, then F; C F,. So, (F;)V_, is a filtration.



LECTURE 28. NOVEMBER 30

Proposition 28.1. (a) (Mt)?:/? is a MG with respect to (.7-})?:/711
(b) t is a stopping time.
Then,
E[FDP;] = E[FDD; - M]]
= aE[Mj]
= aE[MI] = Oé@
n

because

M, = —
n
_ |Hol
p
Proof of 28.1. Fy = o((pi)igres (Pi V t)ien,) For s <t,

L E(Va | (1 V t)icn)

1
— Z P(p; <s|p; V).
ns

E(Ms | F)

i€Ho
Now,
0, pi>t [pi\/t>t]
Plps <s|p;Vt)=1 s
;, i <t [pi\/tzt]
SO
E(M, | F) = — 3 S1{pi <}
S t *nsl n Pi =
1€EHo
1
=—V, =M,
nt

Can we evaluate {f > t} based on F;? {t >t} = {F/]i)s < « for some s > t}.

The martingale proof is fragile, but the problems can be repaired:
e FDR < « if the nulls are > Uniform[0, 1] and “positively dependent”.

e FDR < alogn, so we could use the BH Procedure with level a/(logn).
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