University of California Davis

STA104: Non-Parametric Statistics

Lecturer: Erin Melcon
Scribe: Ramneek Narayan

Last Revision: April 18, 2020

Table of Contents

0 About/Usage 3
0.1 About this Book 3
0.2 How to use this Book 3
1 Week 1: Introduction 4
1.1 Lecture 1: Overview 4
1.2 Lecture 2: HT/Cls for Median (Binomial Distribution) 8
1.3 Lecture 3: Median Cls and Percentiles/C.D.F.s 12
2 Week 2: 2-Sample Tests 18
2.1 Lecture 4: Cls for Percentiles \& Permutation Tests 18
2.2 Lecture 5: Permutation Tests (cont.) \& WRS Test 23
2.3 Lecture 6: WRS (cont.) \& Approximations 28
2.4 Appendix (Week 2) 33
3 Week 3: More 2-Sample Tests \& Comparisons 38
3.1 Lecture 7: Mann-Whitney Test 38
3.2 Lecture 8: Shift CI (cont.) \& KS Test 43
3.3 Lecture 9: Comparison of Two-Sample Tests 47
3.4 Appendix (Week 3) 51
4 Week 4: More Non-Parametric ANOVA 52
4.1 Lecture 10: ANOVA Permutation \& KW Test 52
4.2 Lecture 11: KW Example \& Mult. Comparisons 57
5 Week 5: Group Comparisons (cont.) \& Linear Tests 62
5.1 Lecture 12: Permutation Cutoffs/Rev. of Linear Tests 62
5.2 Lecture 13: Non-Parametric Linear Tests 66
5.3 Lecture 14: Ranked Correlation Tests 70
5.4 Appendix (Week 5) 74
6 Week 6: Correlation Tests (cont.) \& Tests for Independence 76
6.1 Lecture 15: Hypothesis Tests for Kendall's Tau 76
6.2 Lecture 16: More on Correlation \& Contingency Tables 81
6.3 Lecture 17: Permutation Test for Independence 84
7 Week 7: Prob. Comparisons \& Bootstapping 87
7.1 Lecture 18: Independence \& Bootstrapping (Intro) 87
7.2 Lecture 19: Bootstrap Point/Interval Estimation 90
7.3 Lecture 20: BCA Bootstrap CI 94
8 Week 8: Bootstrap "t" Interval 98
8.1 Lecture 21: Bootstrap "t" Interval 98
9 Week 9: Interval Comparisons \& KNN 102
9.1 Lecture 22: Interval Comparisons 102
9.2 Lecture 23: K-Nearest Neighbors (KNN) 104
10 Week 10: KNN (cont.) 107
10.1 Lecture 24: More KNN \& CV 107
References 111

\section*{| Chapter 0 | About/Usage |
| :--- | :--- |}

0.1 About this Book

These are some notes that were typeset by Ramneek Narayan after he completed STA104. There are new additions such as theorems, definitions, appendices, references, and proofs. These notes were created in an effort to make the material for the course more accessible and reader friendly. I'm sure there are typos and if you spot any, let the writers know.

0.2 How to use this Book

This book was written with the student in mind and comes with colored environments to make reading easier. In addition, at the end of each environment are symbols used conclude the environment (show that it is completed); they are there for organization and for your ease of reading. We list the environments below for clarity:

Example $=$ Red Violet concludes with
Remark = Teal concludes with '
Definition $=$ Lime Green concludes with
Theorem = Royal Purple concludes with
Proposition $=$ Mulberry concludes with
Note $=$ Orange concludes with ' $\mathbf{\Delta}$
Emphasis = Royal Blue concludes with ' \star '

Read at your own pace and if anything doesn't make sense, argue with the instructor! It makes sense at the end sometimes. Other than that, the book is pretty straight forward to read. We hope you enjoy reading it!

Chapter 1
 Week 1: Introduction

1.1 Lecture 1: Overview

Non-parametric statistics uses techniques that do not require typical assumptions of traditional techniques (so-called parametric statistics). To see why we still use nonparametric methods in statistics today, consider a traditional text for a single mean. It has the following form:

$$
\begin{gathered}
H_{0}: \mu=\mu_{0} \text { or } H_{0}: \mu \leq \mu_{0} \text { or } H_{0}: \mu \geq \mu_{0} \text { vs. } \\
H_{A}: \mu \neq \mu_{0} \text { or } H_{A}: \mu>\mu_{0} \text { or } H_{A}: \mu<\mu_{0}
\end{gathered}
$$

The test statistic normally used is the t-statistic $t_{s}=\left(\bar{x}-\mu_{0}\right) /(s / \sqrt{n})$ with degrees of freedom $d f=n-1$. Each respective H_{A} has the following p-values:

$$
2 P\left(t>\left|t_{s}\right|\right), \quad P\left(t>t_{s}\right), \quad P\left(t<t_{s}\right)
$$

As always we use the same decision rule for making an inference:

1. If p-value $<\alpha$, reject H_{0}
2. If p-value $\geq \alpha$, fail to reject H_{0}

When we conducted the t-test, what assumptions did we make and why?

Two assumptions that stand out are:

Assumptions of t-test

1. Random sample was taken, i.e. X_{i} 's are all independent of each other
2. \bar{X} (the random variable (r.v.) denoting all possible sample means) is assumed to be approximately normal, i.e. $\bar{X} \sim N\left(\mu_{X}, \sigma_{X}^{2} / n\right)$. We know this because:

- $n \geq 30$ (using the Central Limit Theorem) OR
- Population is normal

We need these assumptions because:

Reasons for Assumptions

1. Random sampling allows us to simplify the formula for the variance of the sample mean $\sigma_{\bar{X}}^{2}$ as $\sigma_{\bar{X}}^{2}=\sigma_{X}^{2} / n$ since $V(\bar{X})=\sum V\left(X_{i}\right) / n^{2}=V(X) / n$ assuming mutual independence.
2. Normality of \bar{X} lets us say $t=\left(\bar{X}-\mu_{0}\right) /(S / \sqrt{n})$ is t_{n-1} distributed, i.e. $t \sim t_{n-1}$. It also in turn allows us to make confidence intervals (Cls) and hypothesis tests (HIs).

Note: We use this statistic because $\sigma_{\bar{\chi}}$ is unknown. If it was known, then we replace S with $\sigma_{\bar{\chi}}$ in the test statistic t, giving $t \sim N(0,1)$ here.

Notice, however, that the key part in making this test was that we assumed some test-statistic had a known named distribution. Then, we used this distribution to find percentiles for Cls and probabilities for p-values.

Sometimes this doesn't happen when actually collect data.

To remedy this, we have non-parametric statistics. It addresses the issue that arises when we do not have the assumptions we need to assume a named distribution. For this reason, non-parametric statistics is often called "distribution free statistics."

1.1.1 What happens if assumptions are violated?

Typically, the assumption that is most often violated is whatever distribution we assumed (typically a normal distribution). This makes the errors involved in HTs and Cls to grow really fast.

Recall:

- $\alpha=P($ Type I Error $)=P\left(\right.$ Reject $H_{0} \mid H_{0}$ true $)$
- $\beta=P($ Type II Error $)=P\left(\right.$ Fail to reject $H_{0} \mid H_{0}$ false $)$
- Power $=1-\beta=P\left(\right.$ Reject $H_{0} \mid H_{0}$ false $)$

A good measure of the accuracy of a hypothesis test is power; we are especially interested in a test's ability to detect a false null hypothesis since we usually have an intuition for suspecting (creating) an alternative hypothesis $\left(H_{A}\right)$. Now, if the assumptions for distributions hold, parametric tests will often have more power. However, when assumptions are violated, non-parametric tests will have higher power.

1.1.2 Common Parametric Tests

Some common tests you may be familiar with:

Well-known Parametric Tests

1. $H_{0}: \mu=\mu_{0}$ (test for a single mean)

- Requires $\bar{X} \sim N\left(\mu_{X}, \sigma_{X} / \sqrt{n}\right)$

2. $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ (comparison of two means)

- Requires \bar{X}_{1}, \bar{X}_{2} are independent and $\bar{X}_{i} \sim N\left(\mu_{i}, \sigma_{i} / \sqrt{n}\right)$ for $i \in\{1,2\}$

3. $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{1}$ (ANOVA)

- Requires $\epsilon_{i} \stackrel{\text { iid }}{\sim} N\left(0, \sigma_{\epsilon_{i}}^{2}\right)$ and I groups are mutually independent

4. $H_{0}: \beta_{i}=0$, assuming $Y_{i}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\epsilon_{i}$

- Requires $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$

Each test has its own caveats and they are especially weakened when their assumptions do not hold due to...

1. Outliers
2. Small sample sizes
3. Normal assumption violated

Fortunately, there are some solutions to these problems and we can

1. Remove outliers, where appropriate
2. Data transformations under non-normality

However, there are currently no known methods for small sample sizes and our "solutions" above don't always work. Hence prompting a need for non-parametric methods.

1.1.3 Broad Overview of Non-Parametrics

Here are some common non-parametric techniques:

Common Non-Parametric Methods

1. Binomial Based Tests: We assume something is distributed binomial, which is somewhat less strict that normal
2. Permutation Tests: We randomize data among groups, and use a permutation distribution distribution to form HT and Cls
3. Bootstrap Methods: Resample the data from itself with replacement to form a bootstrap distribution to use for Cls and HTs .
4. "Modern"/Machine Learning Techniques: Primarily "K nearest neighbors", Regression/Classification Trees, and possibly Linear Discriminant Analysis (LDA)

1.2 Lecture 2: HT/Cls for Median (Binomial Distribution)

The reason we often use the mean is because of the CLT, which tells us the mean is approximately normal if a random sample was taken from a population with sample size greater than $30(n \geq 30)$.

But, when we can't assume this, the median is often just as good since it is also a measure of central tendency. Before going into more detail, recall the definition of the median:

Definition 1.2.1 (Median). For continuous data, the median is is the value $X_{(m)}$ such that $\approx 50 \%$ of the data lies below it and $\approx 50 \%$ lies above it. I.e.,

$$
P\left(X<X_{(m)}\right) \approx 0.50, P\left(X>X_{(m)}\right) \approx 0.50
$$

When we sample from a population, we compute what are known as sample medians, marked as $x_{(m)}^{j}$ for the j-th sample. If we were to plot a histogram of all these sample medians, we would eventually arrive at the sampling distribution of the population median. The random variable that describes this distribution is known as θ_{m} and our best bet as to what the population median is known as the hypothesized median, denoted as θ_{m}°.

Now, stating H_{0} and H_{A} in terms of θ_{m} and θ_{m}° yields the following hypotheses:

Hypotheses for Median HT

1. $H_{0}: \theta_{m} \leq \theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m}>\theta_{m}^{\circ}$
2. $H_{0}: \theta_{m} \geq \theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m}<\theta_{m}^{\circ}$
3. $H_{0}: \theta_{m}=\theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m} \neq \theta_{m}^{\circ}$

We could also phrase the above hypotheses in terms of probabilities if we set $p=P\left(X_{i}>\theta_{m}^{\circ}\right)$ where X_{i} is any data point we sampled. Then the hypotheses become

$$
H_{0}: p \leq 0.5 \text { vs. } H_{A}: p>0.5,
$$

for example.
Consider marking those observations that are above our predicted value of the median, we can formalize this as:

$$
B_{i}^{+}= \begin{cases}1 & \text { if } X_{i}>\theta_{m}^{\circ} \\ 0 & \text { if } X_{i}<\theta_{m}^{\circ}\end{cases}
$$

Immediately, we can see that $B_{i}^{+} \sim$ Bernoulli since it consists of only two outcomes. Notice that $\sum_{i} B_{i}^{+}=\#$ of $X_{i}>\theta_{m}$. We will call this quantity B^{+}.

If the null hypothesis H_{0} is true (we will use the equality sign to make computations easier for the other two versions of the null hypothesis, so $\theta_{m}=\theta_{m}^{\circ}$), then

$$
B^{+} \sim \operatorname{Bin}(n, 1 / 2)
$$

since it is a sum of Bernoulli trials.
Thus, our p-value, which is the probability of observing our sample data as or more extreme if the H_{0} is true, is:

P-values for Median HT

1. If $H_{A}: \theta_{m}>\theta_{m}^{\circ} \Rightarrow \mathrm{p}$-value $=P\left(B^{+} \leq b^{+}\right)$
2. If $H_{A}: \theta_{m}<\theta_{m}^{\circ} \Rightarrow \mathrm{p}$-value $=P\left(B^{+} \leq b^{+}\right)$
3. If $H_{A}: \theta_{m} \neq \theta_{m}^{\circ} \Rightarrow \mathrm{p}$-value $=\min \left\{P\left(B^{+} \geq b^{+}\right), P\left(B^{+} \leq b^{+}\right)\right\}$

Where $B^{+} \sim \operatorname{Bin}(n, 1 / 2)$ as before and b^{+}is the observed value of this r.v. from our sample.

As usual, reject H_{0} if p-value $\leq \alpha$. Notice, B^{+}is essentially the test statistic.
Notice that if $H_{0}: \theta_{m}<\theta_{m}^{\circ}$ is true, then $P\left(B^{+} \geq b^{+}\right)$should be at least 0.5 . Similarly, if H_{0} is not true, we would expect $P\left(B^{+} \geq b^{+}\right)$to be less than 0.5 . The other hypotheses reverse the direction of the inequality or make $P\left(B^{+} \geq b^{+}\right)$exactly 0.5 .

Example 1.2.1 (Midterm Scores). Suppose a sample of 12 students had the following midterm I scores:

Scores: 55, 64, 65, 67, 67, 68, 69, 72, 73, 75, 80, 88
Suppose the hypothesis is the median is at least 70.
(a) State H_{0} and H_{A}

- Solution: The claim is that $\theta_{m} \geq 70$, as such we will put it as a null hypothesis and use our data to seek evidence to the contrary. Thus, the null and alternative hypotheses are:

$$
H_{0}: \theta_{m} \geq 70 \quad H_{A}: \theta_{m}<70
$$

(b) Calculate the appropriate p-value

- Solution: Since $H_{A}: \theta_{m}<70$, we define the p-value as $P\left(B^{+} \leq b^{+}\right)$. In this problem we have $b^{+}=\#$ of observations $>70=5$. The p-value is then $P\left(B^{+} \leq 5\right)=P\left(B^{+}=5\right)+P\left(B^{+}=4\right)+\cdots+P\left(B^{+}=0\right) \approx 0.3872$ (using R or table of binomial probabilities).
(c) Interpret the p-value in terms of the problem
- Solution: If the null hypothesis was true $\left(\theta_{m} \geq 70\right)$, then the chance we would observe our data or "more extreme" (less values greater than 70) is about 0.3872.
(d) State your conclusion in terms of the problem
- Solution: Since p-value $<\alpha$, we fail to reject the null and conclude the median is at least 70.

Remark 1.2.1. This test only requires

1. A random sample was taken from a continuous distribution

Also note that if any $X_{i}=\theta_{m}^{\circ}$, then we usually remove these values (thereby reducing n) and carry out the test.

1.2.1 Normal Approximation to Binomial Test

Now, with a reasonable sample size, we may assume (using the CLT) that

$$
\sum B_{i}^{+} \sim N(n p, \sqrt{n p(1-p)}), \text { where } p=1 / 2 \text { under } H_{0}
$$

So we can then make a test statistic using a Z (standard normal) distribution. Our hypotheses stay exactly the same and for clarity we rewrite below:

Hypotheses under Normal Approximation

1. $H_{0}: \theta_{m} \leq \theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m}>\theta_{m}^{\circ}$
2. $H_{0}: \theta_{m} \geq \theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m}<\theta_{m}^{\circ}$
3. $H_{0}: \theta_{m}=\theta_{m}^{\circ}$ vs. $H_{A}: \theta_{m} \neq \theta_{m}^{\circ}$

Interestingly, the test statistic we calculate for all three types of tests remains the same: $S=B^{+}$. To have universal testing procedures, we normalize this accordingly to give final form:

$$
Z=\frac{S-n(0.5)}{\sqrt{n(0.25)}} \quad \text { assuming } H_{0} \text { is true }
$$

The p-values then follow upon geometric inspection of the standard normal curve:

P-values Under Normal Approximation

1. $H_{A}: \theta_{m}>\theta_{m}^{\circ} \Longrightarrow$ p-value $=P(Z>z)$
2. $H_{A}: \theta_{m}<\theta_{m}^{\circ} \Longrightarrow$ p-value $=P(Z<z)$
3. $H_{A}: \theta_{m} \neq \theta_{m}^{\circ} \Longrightarrow$ p-value $=P(|Z|>z)=2 P(Z>|z|)$

Example 1.2.2 (Midterm Scores Cont.). Let's use the normal approximation on the same problem. The hypotheses are:

$$
H_{0}: \theta_{m} \geq 70 \quad H_{A}: \theta_{m}<70
$$

and the observed value of the test statistic is $b^{+}=5$. In this problem then, $n=12$ and $s=5$. Computing the z-statistic is then:

$$
z=\frac{5-(12)(0.5)}{\sqrt{(12)(0.25)}}=\frac{-1}{\sqrt{3}} \approx-0.577
$$

We then end up with a p-value of

$$
P(Z<-0.577)=0.2810
$$

Again, we fail to reject H_{0} since $\alpha=0.05$ which matches the binomial test.
In order to conduct this test we assume:

1. Random sample was taken
2. At least 5 observations are above and below the hypothesized value of the median

1.3 Lecture 3: Median Cls and Percentiles/C.D.F.s

1.3.1 Confidence Intervals for the Median

The sample median is what's known as an order statistic, it is a certain spot on an ordered set of data. More formally, we define order statistics as follows:

Definition 1.3.1 (Order Statistics). Given a random sample of data $X_{1}, X_{2}, \ldots, X_{n}$, we may reorder the values from greatest to least yielding a permuted data set $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ where we read $X_{(i)}$ as the i-th highest data entry. The entries $X_{(i)}$ are then called order statistics. Notice that $X_{(1)}=$ minimum X_{i} and $X_{(n)}=$ maximum X_{i}.

In order to construct Cls for a true population parameter, we somehow isolate the parameter of interest as we do with the sample mean \bar{X} yielding $\mu \in[\alpha, \beta]$ with some degree of confidence. For the population median, however, this method of isolation called pivoting is not necessary. We can instead make some progress by considering the nature of the population median θ_{m}. Clearly, by definition, if we order our data, then each point has a 50% chance of lying above this median. If we further describe our data using order statistics $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$, then we arrive at the following theorem adapted from [9]

Theorem 1.3.1 (Median Cl$)$. For any distribution free sample the population median is approximately bounded above and below the order statistics $X_{(i)}$ and $X_{(j-1)}$ by degree of confidence $\sum_{k=i}^{j-1}\binom{n}{k}(1 / 2)^{n}$. That is:

$$
P\left(X_{(i)} \leq \theta_{m} \leq X_{(j-1)}\right) \approx \sum_{k=i}^{j-1}\binom{n}{k}(1 / 2)^{n}
$$

Proof. We begin with a simple case, that is, solving for the following probability:

$$
\begin{equation*}
P\left(X_{(k)} \leq \theta_{m} \leq X_{(k+1)}\right) \tag{1.3.1}
\end{equation*}
$$

which is the chance of the true median landing within any two adjacent order statistics. We will now rewrite equation (1.3.1) using conjunctions and simplify using the law of multiplication for events:

$$
\begin{equation*}
P\left(X_{(k)} \leq \theta_{m} \& \theta_{m} \leq X_{(k+1)}\right)=P\left(X_{(k)} \leq \theta_{m} \mid \theta_{m} \leq X_{(k+1)}\right) P\left(\theta_{m} \leq X_{(k+1)}\right)=P\left(E_{1} \mid E_{2}\right) P\left(E_{2}\right) \tag{1.3.2}
\end{equation*}
$$

Now, if we know E_{2} happened, the chance for the order statistic Immediately before it to be below θ_{m} does not change as it is still possible for $X_{(k)}$ to fall on either side of the relation between it and θ_{m} (we don't know what value $X_{(k+1)}$ actually takes, just that it's greater than θ_{m}), so the simplification is

$$
\begin{equation*}
P\left(E_{1}\right) P\left(E_{2}\right)=P\left(X_{(k)} \leq \theta_{m}\right) P\left(\theta_{m} \leq X_{(k+1)}\right) \tag{1.3.3}
\end{equation*}
$$

If $X_{(k)} \leq \theta_{m}$, then $X_{(1)}, X_{(2)}, \ldots, X_{(k)} \leq \theta_{m}$ and similarly if $X_{(k+1)} \geq \theta_{m}$, then $X_{(k+1)}, X_{(k+2)}, \ldots, X_{(n)} \geq \theta_{m}$. Again, each order statistic has a 50% chance of being exclusively greater or less than θ_{m} so

$$
P\left(X_{(i)} \leq \theta_{m}\right)=1 / 2 \quad P\left(X_{(j)} \geq \theta_{m}\right)=1 / 2
$$

The last bit of information we need to simplify (1.3.3) is the fact the actual sample values of any order statistic are unknown (in shorthand: $X_{(i)}$ could be X_{α} where $\alpha \in\{1, \ldots, n\}$), so we must take into account all combinations of data points which is $\binom{n}{k}$. Thus,

$$
P\left(X_{(k)} \leq \theta_{m} \leq X_{(k+1)}\right)=\binom{n}{k}(1 / 2)^{k}(1 / 2)^{n-k}=\binom{n}{k}(1 / 2)^{n}
$$

To generalize this probability in order to attain a higher confidence level, we need to find

$$
P\left(X_{(i)} \leq \theta_{m} \leq X_{(j)}\right)
$$

for any $i<j$. Notice that when $X_{(i)} \leq \theta_{m} \leq X_{(j)}$ a direct implication is that $\left[X_{(i)} \leq \theta_{m} \leq\right.$ $\left.X_{(i+1)}\right] \oplus\left[X_{(i+1)} \leq \theta_{m} \leq X_{(i+2)}\right] \oplus \ldots \oplus\left[X_{(j-1)} \leq \theta_{m} \leq X_{(j)}\right]$. These events are all disjoint since the bounds do not intersect.

The probability then becomes

$$
\begin{aligned}
P\left(X_{(i)} \leq \theta_{m} \leq X_{(j)}\right) & =\sum_{k=i}^{j-1} P\left(X_{(k)} \leq \theta_{m} \leq X_{(k+1)}\right) \\
& =\sum_{k=i}^{j-1}\binom{n}{k}(1 / 2)^{k}(1 / 2)^{n-k}=\sum_{k=i}^{j-1}\binom{n}{k}(1 / 2)^{n}
\end{aligned}
$$

Naturally, it follows that since $P\left(\theta_{m}=X_{(j)}\right)=0$ (we draw from a continuous population) we have

$$
P\left(X_{(i)} \leq \theta_{m} \leq X_{(j-1)}\right) \approx \sum_{k=i}^{j-1}\binom{n}{k}(1 / 2)^{n}
$$

as we sought to show.

This theorem allows us to make Cls based on the binomial distribution as well as those using a normal approximation to the binomial.

Cls for Median

(i) Based on the Binomial Distribution

- For a CI, we want a roughly symmetric interval where

$$
P\left(a<\theta_{m}<b-1\right)=1-\alpha
$$

for some lower bound a, and upper bound ($b-1$).

Note: Because the binomial distribution is discrete, the lower bound is a and the upper bound is $(b-1)$ to adjust for the discrete nature of the data. Consider, $X \sim \operatorname{Bin}(n, 1 / 2)$, then $P(X>a) \neq P(X \geq a)$.

This Cl computation to find a and $(b-1)$ is typically done via computer, and the bounds are found as locations where

$$
\sum_{k=a}^{b-1}\binom{n}{k}(0.5)^{n} \approx 1-\alpha \quad(\text { see Median CI) }
$$

where the computer starts with

- $a=$ first location below median
- $b=$ first location above median
and works outwards from there. At the end, it uses the ordered data point $X_{(i)}$ in the (ath) and ($b-1$ th) location. In a sentence, the Cl states there is a $(1-\alpha) 100 \%$ chance of the true population median begin contained by the ath and $b-1$ th order statistic.
(ii) Using the Normal Approximation to the Binomial
- Now, we still want $P\left(a<\theta_{m}<b-1\right)=1-\alpha$, i.e. $P\left(\theta_{m}<a\right)=\alpha / 2$ and $P\left(\theta_{m}>b-1\right)=\alpha / 2$. Notice the the statement for the binomial case is about collecting areas from a binomial variate $X \sim \operatorname{Bin}(n, 1 / 2)$. We can approximate this binomial variate using a normal curve yielding $a \approx-z_{1-\alpha / 2} \sqrt{V(X)}+E(X)$ and $b-1 \approx z_{1-\alpha / 2} \sqrt{V(X)}+E(X)$. The locations of the bounds then become

$$
\begin{gathered}
a=\text { lower bound location }=-z_{1-\alpha / 2}(\sqrt{0.25 n})+0.5 n \\
b=\text { upper bound location }=z_{1-\alpha / 2}(\sqrt{0.25 n})+0.5 n+1
\end{gathered}
$$

rounded to the nearest integer.

Note: $z_{1-\alpha / 2}$ is the $(1-\alpha / 2) 100 \%$ percentile of the Z (standard normal) distribution.

Example 1.3.1 (Height Data). Suppose we had the following data on height:
Height: $48,48,50,52,54,54,55,56,56,57,57,57,58,58,59,60,62,62,63,71$
(a) Find the $95 \% \mathrm{Cl}$ for the median using the normal approximation to the binomial.

- Solution: We use the same form as found out for the locations only set $n=20$:

$$
\begin{gathered}
\text { lower bound location }=a=-1.96(\sqrt{0.25(20)})+5(20) \approx 5.617 \approx 6 \\
\text { upper bound location }=b=+1.96(\sqrt{0.25(20)})+5(20)+1 \approx 15.3826 \approx 15
\end{gathered}
$$

So the Cl will be $\left(X_{(6)}, X_{(15)}\right)$ or $(54,59)$ with degree of confidence 95%.
(b) Does your interval suggest that the median is above 56?

- Solution: While there are values that are above 56 in the Cl (e.g. 58), there are also values less than 56 (e.g. 55). We can only have valid evidence for $\theta_{m}>56$ if and only if all points in the Cl are above 56. In short, no, both bounds are not over 56.
(c) Interpret the Cl in terms of the problem.
- Solution: We are 95% confident that the true median is between 54 and 59 inches.

Note: Some computer programs will extrapolate to an approximate value for a decimal location. This isn't a problem, just round the bounds to make sure the answer makes sense (i.e. the bounds are part of the data set given).

1.3.2 Estimating Percentiles and C.D.F.s

Recall: The Cumulative Distribution Function or C.D.F (F) for discrete data is defined to be

$$
F(x)=\sum_{t=\min \{X\}}^{x} P(X=t)=P(X \leq x)
$$

The empirical CDF \hat{F} is an estimate of $F(x)$ where

$$
\hat{F}(x) \equiv\left(\# \text { of } x_{i} \leq x\right) / n
$$

Example 1.3.2 (Height Data cont.). Here's a reproduction of the data:

Height: $48,48,50,52,54,54,55,56,56,57,57,57,58,58,59,60,62,62,63,71$
Given the data we have, we can construct an empirical C.D.F. For a single data point, say 48, we know that there are exactly 2 numbers that are below or equal to 48 . So, $\hat{F}(48)=2$. The rest of the points are calculated below in a table:

x	48	50	52	54	55	56	57	58	59	60	62	63	71
$\hat{F}(x)$	$2 / 20$	$3 / 20$	$4 / 20$	$6 / 20$	$7 / 20$	$8 / 20$	$12 / 20$	$14 / 20$	$15 / 20$	$16 / 20$	$18 / 20$	$19 / 20$	$20 / 20$

As a random variable $\hat{F}(x)$ for a given value of x follows a binomial distribution divided by the sample size n. This is because we can write $\hat{F}(x)$ as

$$
\hat{F}(x)=\frac{\mathbf{1}\left(X_{i}<x\right)}{n}=\frac{\sum_{i}^{n} Y_{i}}{n}
$$

where each Y_{i} is a bernoulli trial indicating whether the data point is below x or not. We have $E\left(Y_{i}\right)=F(x)$ since $F(x)$ is the true value of proportion of data below x. Thus $\hat{F}(x)$ is an average of bernoulii trials or $\hat{F}(x) \sim \operatorname{Bin}(n) / n$ and $E(\hat{F}(x))=F(x), V(x)=$ $(F(x)(1-F(x))) / n$.
If the sample size is large enough, then we can use the CLT to approximate the this distribution and give

$$
\hat{F}(x) \sim N(F(x), \sqrt{(F(x)(1-F(x))) / n)}
$$

Since $\hat{F}(x)$ and $F(x)$ are proportions, we can see them as \hat{p} and p respectively. The form of the above statement is then

$$
\hat{p} \sim N(p, \sqrt{(p(1-p)) / n})
$$

if one prefers.
With this approximation we also have $(1-\alpha) 100 \% \mathrm{CI}$ for $F(x)$:

$$
\hat{F}(x) \pm z_{1-\alpha / 2} \sqrt{\hat{F}(x)(1-\hat{F}(x)) / n}
$$

Example 1.3.3 (Height Data cont.). Find a $95 \% \mathrm{Cl}$ for the C.D.F. at $x=60$

- Solution: Looking at the CDF table, we see $\hat{F}(60)=16 / 20=0.8$. The Z quantile for a $95 \% \mathrm{Cl}$ is also $z_{0.975}=1.96$. This then makes the Cl

$$
95 \% \mathrm{Cl}: \quad 0.8 \pm 1.96 \sqrt{0.8(0.2) / 20} \Longrightarrow(0.624,0.975)
$$

Thus we estimate that $x=60$ could be anything from the 62.4 th and 97.5 th percentile.

Note: Ideally For a CDF $F(x)$ we would have at least 5 values above and below. But this may not happen for values of x that are close to the Min or Max.

Chapter 2

Week 2: 2-Sample Tests

2.1 Lecture 4: Cls for Percentiles \& Permutation Tests

2.1.1 Confidence Intervals For Percentiles

The Cl for a median can be easily modified to be a Cl for any percentile. Recall the Cl for the median using the normal approximation for the binomial was

$$
\begin{gathered}
a=\text { lower bound location }=-z_{1-\alpha / 2}(\sqrt{0.25 n})+0.5 n \\
b=\text { upper bound location }=z_{1-\alpha / 2}(\sqrt{0.25 n})+0.5 n+1
\end{gathered}
$$

We note that $0.5 n=E(X)$ and $\sqrt{0.25 n}=\sqrt{V(X)}$. When we no longer speak of the median but rather any percentile $p_{\beta}^{*} \forall \beta \in[0,1]$ we have $E\left(p_{\beta}^{*}\right)=n \beta$ and $\sqrt{V\left(p_{\beta}^{*}\right)}=\sqrt{p_{\beta}^{*}\left(1-p_{\beta}^{*}\right) n}$. A very similar result for p_{β}^{*} 's confidence interval can thus be obtained and $\mathrm{A}(1-\alpha) 100 \% \mathrm{Cl}$ for the $\left(p_{\beta}^{*}\right) 100$ th percentile is:

$$
\begin{aligned}
& \text { lower bound location: }-z_{1-\alpha / 2}\left(\sqrt{p_{\beta}^{*}\left(1-p_{\beta}^{*}\right) n}\right)+n \beta \\
& \text { upper bound location: } z_{1-\alpha / 2}\left(\sqrt{p_{\beta}^{*}\left(1-p_{\beta}^{*}\right) n}\right)+n \beta+1
\end{aligned}
$$

These confidence intervals are functions of confidence level, percentile, and sample size. For shorthand, $C I=C I(\alpha, \beta, n)$.

Example 2.1.1. If $n=30$ and find a $99 \% \mathrm{Cl}$ for the 25 th percentile.

- Solution: We have $\alpha=1, \beta=.25, n=30$. Thus, the locations would be:

$$
\text { lower bound location: }-2.575(\sqrt{.25(.75) 30})+30(0.25) \approx 1.393 \Longrightarrow 1 s t
$$

upper bound location: $2.575(\sqrt{.25(.75) 30})+30(0.25)+1 \approx 14.607 \Longrightarrow 14$ th So the ordered values in the 1st and 14th spot are $X_{(1)}$ and $X_{(14)}$.

Note: It is possible for you to round a location to 0 or to $n+1$. In this case, use 1 or n instead.

2.1.2 Comparing two Means

The goal is typically to determine if two means are statistically different (i.e. if $\mu_{1} \neq \mu_{2}$ by data we collect). The typical assumptions for the parametric test are

1. Random sample from both groups
2. Groups are independent
3. \bar{X}_{1} and \bar{X}_{2} are normal, either through...
(i) $n_{i} \geq 30 \quad \forall i \in\{1,2\}$ (CLT)
(ii) Both populations normal

2.1.3 Permutation Test for Two Groups

The idea behind most permutation tests is that we assume that the distribution of the two groups is identical. If that were true each observation should be equally likely to come from either group. Then, we create all possible two group samples possible (ideally). Sometimes data sets are very large so all possible permutations take up more computing resources and we cannot use non-parametric methods. Just a caveat.

Example 2.1.2 (Small Group Permutation). Suppose our two samples are:
Group 1: 2, 4, 6

$$
\text { Group 2: } 5,7,9
$$

Clearly with this sample there is an observed difference of the sample means. We reference this idea with $D^{\text {obs }}$ such that $D^{\text {obs }}=\bar{x}_{1}-\bar{x}_{2}$. If we then set $D_{i}=$ difference in means for ith permutation we can then compute and organize all of the differences when we permute. Now, let's assemble all possible groups we could have had:

Group 1	Group 2	$\mathbf{D}_{i}=\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}$
$(2,4,6)$	$(5,7,9)$	$4-7=3$
$(2,4,5)$	$(6,7,9)$	$3.67-7.33=-3.66$
$(2,4,7)$	$(5,6,9)$	$4.33-6.67=-2.34$
$(2,4,9)$	$(5,7,6)$	$5-6=-1$
$(5,4,6)$	$(2,7,9)$	$5-6=-1$
$(7,4,6)$	$(5,2,9)$	$5.67-5.33=0.34$
$(9,4,6)$	$(5,7,2)$	$6.33-4.67=1.66$
$(2,5,6)$	$(4,7,9)$	$4.33-6.67=-2.34$
$(2,7,6)$	$(5,4,9)$	$5-6=-1$
$(2,9,6)$	$(5,7,4)$	$5.67-5.33=0.34$
$(2,5,7)$	$(4,6,9)$	$4.67-6.33=-1.66$
$(2,5,9)$	$(4,6,7)$	$5.33-5.67=-0.34$
$(2,7,9)$	$(4,6,5)$	$6-5=1$
$(4,5,7)$	$(2,6,9)$	$5.33-5.67=-0.34$
$(4,5,9)$	$(2,6,7)$	$6-5=1$
$(4,7,9)$	$(2,6,5)$	$4.33-6.67=-2.34$
$(6,7,9)$	$(2,4,5)$	$7.33-3.67=3.66$
$(6,5,9)$	$(2,4,7)$	$6.67-4.33=2.34$
$(6,5,7)$	$(2,4,9)$	$6-5=1$
$(5,7,9)$	$(2,4,6)$	$7-4=3$

Notice that we only care about the difference of the means; we do not care about the order of the observations in the groups ($2,4,6$ has same effect as 6, 4, 2 as far as our tests are concerned).

Now, using the above we can create the empirical discrete distribution of possible differences in means:

D_{i}	-3.66	-3	-2.34	-1.66	-1	-0.34	0.34	1	1.66	2.34	3	3.66
Freq	$1 / 20$	$1 / 20$	$2 / 20$	$1 / 20$	$3 / 20$	$2 / 20$	$2 / 20$	$3 / 20$	$1 / 20$	$2 / 20$	$1 / 20$	$1 / 20$

Now, the observed mean difference is $D^{\text {obs }}=-3$. If we are considering "extreme" to be as or more negative, we then have:
p-value: If all observations are equally likely to be in either group (the distributions are equal), then we would observe our data or more extreme with probability 2/20.

Note: Permutation tests are usually done in R (hard to do by hand; too many permutations).

Procedure for Conducting Permutation Tests

Notice that we had to assume the distributions are the same. This would mean the means, standard deviations, minimums, maximums, etc... are all equal between groups. This is in
effect the null hypothesis. In order to conduct a permutation hypothesis test we follow the following steps:

Permutation HT Steps

Step 1: State H_{0} and H_{A}

- Let $F_{1}(x)=$ CDF for group 1 and $F_{2}(x)=$ CDF for group 2. Assuming the distributions for both groups are the same, it must be the case that $F_{1}(x)=F_{2}(x)$ for all x in the data's domain. Thus, possible hypotheses are

$$
\begin{array}{cc}
\mathbf{H}_{0} & \mathbf{H}_{\mathrm{A}} \\
H_{0}: F_{1}(x)=F_{2}(x) & H_{A}: F_{1}(x) \leq F_{2}(x)\left(\mu_{1} \geq \mu_{2}\right) \\
H_{0}: F_{1}(x)=F_{2}(x) & H_{A}: F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \leq \mu_{2}\right) \\
H_{0}: F_{1}(x)=F_{2}(x) & H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \neq \mu_{2}\right)
\end{array}
$$

Where the inequality is valid for at least one x in every alternate hypothesis.
Notice that ${ }^{1}$

- $F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x) \Longrightarrow$ Distributions are different
- $F_{1}(x) \leq F_{2}(x) \Longrightarrow$ Group 1 tends to be larger than Group 2, i.e. $\left(E\left(X_{1}\right)>\right.$ $\left.E\left(X_{2}\right)\right)$
- $F_{1}(x) \geq F_{2}(x) \Longrightarrow$ Group 2 tends to be larger than Group 1, i.e. $\left(E\left(X_{1}\right)<\right.$ $\left.E\left(X_{2}\right)\right)$
Step 2: Calculate the observed statistic and all permutations.
- The observed statistic could be any number of things such as: $D^{\text {obs }}=\bar{x}_{1}-\bar{x}_{2}, D^{\text {obs }}=$ total $_{1}-$ total $_{2}$, or $D^{\text {obs }}=$ median $_{1}-$ median $_{2}$. If we set $m=$ sample size of group 1 and $n=$ sample size of group 2 , then there are

$$
\binom{m+n}{m}=\binom{m+n}{n}=\frac{(m+n)!}{m!n!}
$$

total possible permutations.

[^0]Step 3: Calculate the permutation p-value. For each hypothesis, the p-value is:

Alternate Hyp.

$$
\begin{aligned}
& H_{A}: F_{1}(x) \leq F_{2}(x) \\
& H_{A}: F_{1}(x) \geq F_{2}(x) \\
& H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)
\end{aligned}
$$

p-value

(\# of $\left.D_{i} \geq D^{\mathrm{obs}}\right) /\binom{m+n}{n}$
$\left(\#\right.$ of $\left.D_{i} \leq D^{\text {obs }}\right) /\binom{m+n}{n}$
(\# of $\left.\left|D_{i}\right| \geq\left|D^{\mathrm{obs}}\right|\right) /\binom{m+n}{n}$
Step 4: Reject H_{0} if p-value $\leq \alpha$

Note: Typically when we have asymmetric distributions, we use the median to compare outliers. When we have a roughly symmetric distribution, we use the total or mean. So, the choice of $D^{\text {obs }}$ does not always have to involve the mean.

2.2 Lecture 5: Permutation Tests (cont.) \& WRS Test

2.2.1 Approximate Permutation Test

When the sample sizes get moderately large, all permutations can be difficult to calculate (or code). When this happens, instead of calculating literally all permutations we randomly generate permutations. For example, if $n=m=10$, then $\binom{n+m}{n}=\binom{20}{10}=184,756$ total permuted groups. This would take a computer some time to make all of the permutations and certainly for us even longer. Hence, the need to randomly generate these permutations.

Note: Randomly generating permutations will give an approximate p-value rather than the true permutation p-value. This thus makes it a random variable and subject to error. More permutations usually minimize this error.

The steps for an approximate permutation test are given below:

Steps for an Approximate Permutation Test (for coding):

1. Record $D^{\text {obs }}$
2. Create one vector of all observations, \vec{q}
3. Randomly shuffle the $(m+n)$ observations, and assign first m to group 1 last n to group 2
4. Compute $D_{i}=$ observed difference in (means/medians/totals)
5. Repeat steps 3 \& $4 \mathbf{R}>\mathbf{2 0 0 0}$ times
6. Based on these R random values of D_{i}, we have an approximate permutation distribution. Thus, our approximate p-values are:

Alternate Hyp.	p-value
$H_{A}: F_{1}(x) \leq F_{2}(x)$	$\left(\#\right.$ of $\left.D_{i} \geq D^{\mathrm{obs}}\right) / R$
$H_{A}: F_{1}(x) \geq F_{2}(x)$	$\left(\#\right.$ of $\left.D_{i} \leq D^{\mathrm{obs}}\right) / R$
$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)$	$\left(\#\right.$ of $\left.\left\|D_{i}\right\| \geq\left\|D^{\mathrm{obs}}\right\|\right) / R$

7. If p-value $<\alpha$, then reject H_{0}

Remark 2.2.1. You will get code that I have made and you can modify it as needed.

2.2.2 Confidence Interval for P-value

Since we are finding an approximate p-value which is a random quantity, we may want to estimate the p-value further. Notice that the calculated p-value \tilde{p} in all cases has the form:

$$
\tilde{p}=\frac{\sum_{i}^{R} \mathbf{1}\left(\varphi\left(D_{i}\right) \odot \varphi\left(D^{o b s}\right)\right)}{R} \quad \odot \in\{\geq, \leq\}
$$

for some transformation φ. As such, we can view \tilde{p} as the sum of R Bernoulli trials where the chance of success is the true p-value (think of each indication as ' 1 ' being this is as or more extreme, the true chance of as or more extreme is set as p^{*}, so each summand $\sim \operatorname{Bernoulii}\left(p^{*}\right)$). It then follows that

$$
\tilde{p} \sim \frac{\operatorname{Bin}\left(R, p^{*}\right)}{R}
$$

Then, a $(1-\alpha) 100 \% \mathrm{Cl}$ for a p -value p^{*} is

CI for permutation p-value

$$
p^{*} \pm z_{1-\alpha / 2} \sqrt{p^{*}\left(1-p^{*}\right) / R}
$$

Example 2.2.1 (Theoretical CI). Suppose based on $R=2000$ random permutations the approximate permutation p-value was 0.0432 . Find the 90% approximate p-value.

- Solution: The 90% CI for our approximate p-value is

$$
0.04321 \pm 1.645 \sqrt{0.0432(1-0.432) / 2000} \Longrightarrow(0.0357,0.0507)
$$

2.2.3 Normal Approximation To Permutations

When we use a normal approximation to permutations we again assume that both groups come from the same population. To perform hypothesis tests, we use the overall mean \bar{x}^{*} and overall standard deviation s^{*} in our test statistic. Since both groups are from the same population (under H_{0}), $\bar{X}^{*} \rightarrow \mu^{*}$ and $S^{*} / \sqrt{m} \rightarrow \sigma_{\bar{X}^{*}}^{*}$ as more equal size samples are taken.

Remark 2.2.2. For this test we need $m+n \geq 30$
The steps to conduct the hypothesis test using the permutation normal approximation are

Permutation Normal Approximation HT

Step 1: State H_{0} and H_{A}

- A table for all cases is given below:

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x) \quad\left(\mu_{1} \geq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \geq F_{2}(x) \quad\left(\mu_{1} \leq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x) \quad\left(\mu_{1} \neq \mu_{2}\right)$

Step 2: Our test statistic

$$
Z=\frac{\bar{X}_{1}-\bar{x}^{*}}{s^{*} / \sqrt{m}} \sim N(0,1) \text { (approx.) }
$$

Step 3: Calculate the p-value

- A table for each alternate hypothesis p-value is given

\mathbf{H}_{A}	p-value
$H_{A}: F_{1}(x) \leq F_{2}(x)\left(\mu_{1} \geq \mu_{2}\right)$	$P(Z>z)$
$H_{A}: F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \leq \mu_{2}\right)$	$P(Z<z)$
$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \neq \mu_{2}\right)$	$2 P(Z>\|z\|)$

Step 4: If p-value $<\alpha$, reject H_{0}

2.2.4 Wilcoxon Rank Sum (WRS) Test

A different approach to the same problem (difference between two groups) is instead of using the actual data values, to use the ranks of the data values instead. The main way this works is if one group has larger observations than the other, in general it will also have larger ranks than the other. Ranks are directly proportional to the values of the data, lower data points, lower ranks and vice versa. Before we begin further, let's define specifically what a rank is:

Definition 2.2.1 (Rank). The rank of any data point x_{i} with $m+n$ entries is

$$
R\left(x_{i}\right)=\sum_{j=1}^{m+n} \mathbf{1}\left(x_{j} \leq x_{i}\right)
$$

If any points have the same point value (not rank), then we take the average of their ranks and assign these numbers this rank. For example, if $x_{i}=x_{j}$ but $R\left(x_{i}\right) \neq R\left(x_{j}\right)$ upon first assignment, then $R\left(x_{i}\right)=\left(R\left(x_{i}\right)+R\left(x_{j}\right)\right) / 2$ and $R\left(x_{j}\right)=\left(R\left(x_{i}\right)+R\left(x_{j}\right)\right) / 2$

Remark 2.2.3. Remark: (WRS) tends to outperform permutation tests in certain situations which we will discuss later.

In order to conduct the test we follow these steps:

WRS HT Steps

Step 1: State the hypotheses (they remain the same as with permutation tests since we are after the same inference)

- The hypotheses are reproduced below

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x) \quad\left(\mu_{1} \geq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \leq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \neq \mu_{2}\right)$

Step 2: Our test statistic requires the following steps:
(a) Combine the $(m+n)$ values into one group/vector: \vec{q}
(b) Calculate the rank for each data point
(c) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic,

$$
W_{\text {obs }}=\sum_{\text {group } 1} R\left(x_{i}\right)
$$

Step 3: To find The exact p-value you would calculate all $\binom{m+n}{n}$ permutations of the two groups and calculate the distribution of

$$
W_{i}=\text { sum of ranks in group } 1
$$

Then,

Alternate Hyp.

$$
\begin{aligned}
& H_{A}: F_{1}(x) \leq F_{2}(x) \\
& H_{A}: F_{1}(x) \geq F_{2}(x) \\
& H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)
\end{aligned}
$$

p-value

$$
\begin{aligned}
& \left(\# \text { of } W_{i} \geq W_{\text {obs }}\right) /\binom{n+m}{n} \\
& \left(\# \text { of } W_{i} \leq W^{\text {obs }}\right) /\binom{n+m}{n} \\
& 2 \min \{\text { both one-sided p-values }\}
\end{aligned}
$$

Step 4: If p-value $<\alpha$, then reject H_{0}

Note: WRS tends to have higher power when the distribution is skewed and outliers are present since assigning ranks essentially removes all influence of both issues.

Permutation tests, however, tend to have higher power when the distribution is thought to be symmetric and when using the mean as a measure of central tendency.

2.3 Lecture 6: WRS (cont.) \& Approximations

Let's see the WRS test in an example:

Example 2.3.1 (Exam Scores). Suppose that exam scores for math majors and computer science majors in a statistics course were:

$$
\text { Math: } 80,85
$$

Computer Science: 75, 80, 90

Assume we want to test if the groups means are different, i.e. $\mu_{\text {math }} \neq \mu_{\text {comp }}$.
(a) State H_{0} and H_{A}

- Solution: Since this test is about mean inequality (no knowledge about which direction the inequality is), the null and alternative are

$$
\begin{gathered}
H_{0}: F_{1}(x)=F_{2}(x) \\
H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)
\end{gathered}
$$

(b) Calculate all possible values of the rank sums for Group 1.

- Solution: A table giving the data, ordinal ranks, and adjusted ranks (one we use for test) is given below:

Observations:	75	80	80	85	90
Ordinal Ranks (R'):	1	2	3	4	5
$\mathbf{R (}\left(\mathbf{x}_{\mathrm{i}}\right):$	1	2.5	2.5	4	5

The number of permutations is the number of ways we can group data into group 1 (math group): $\binom{5}{2}=10$. Looking at the ordinal ranks, we can list all possible ranks for group 1 as follows

\mathbf{R}^{\prime} Group 1:	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(2,4)$
\mathbf{R}^{\prime} (cont.):	$(3,4)$	$(2,5)$	$(3,5)$	$(4,5)$	$(2,3)$

If we define a mapping $\psi: R^{\prime} \rightarrow R$ such that (for example) $\psi(2)=2.5$, we can get the WRS rank permutations and associated rank sums $\left(W_{i}\right)$:

$\mathbf{R}\left(\mathbf{x}_{\mathrm{i}}\right)$	W_{i}	$\mathbf{R}\left(\mathbf{x}_{\mathrm{i}}\right)($ cont.)	W_{i}
$(1,2.5)$	3.5	$(2.5,4)$	6.5
$(1,2.5)$	3.5	$(2.5,5)$	7.5
$(1,4)$	5	$(2.5,5)$	7.5
$(1,5)$	6	$(4,5)$	9
$(2.5,4)$	6.5	$(2.5,2.5)$	5

(c) Calculate the WRS test statistic and the appropriate p-value

- Solution:

$$
\begin{gathered}
W_{o b s}=6.5 \\
p \text {-value: } 2\left(\# W_{i} \geq W_{\text {obs }}=6.5\right) / 10=2(5) / 10=1>\alpha=0.05
\end{gathered}
$$

(d) State your conclusion in terms of the problem.

- Solution: We fail to reject H_{0} and conclude we may support that the distributions (or means, medians) are similar.

Remark 2.3.1. As with most hypothesis tests the smaller the sample the more difficult it will be to reject the null (the measure of central tendencies are equal). This is because of the high variability of small samples. Small samples also have ranks that reveal no actual information about the degree the values observed are from each other, so even if the values are extremely high, we still fail to reject the null. For example, suppose the data looked like:

$$
\text { Math: 20, } 30
$$

Computer Science: 10, 20, 100
we will have the same test result as before (ranks the same). Notice this test takes away the effect of outliers whilst keeping the sample size the same. As always, it is easier to make an inference with more data. Then the distribution of the ranks is apparent.

2.3.1 Large Sample Approximation to WRS

The WRS test can be approximated with large enough sample sizes. Before discussing it, let's introduce some notation. Let
$N=m+n$, and $R\left(x_{1}\right), \ldots, R\left(x_{N}\right)$ be the corresponding combined ranks of the two groups

Also, let $S_{1}=$ sum of ranks for group 1 .
Under the assumption that the distributions are equal every rank $R\left(x_{i}\right)$ should have been equally likely to come from both groups. If we haven't observed the data yet, then $R\left(x_{i}\right)$ are random variables with their own expectations and variances. It is as if we are drawing numbers $\{1,2, \ldots, N\}$ from a bag without replacement, then adjusting for the rank for our tests.

It can be shown that ${ }^{2}$

Facts about Rank Sums

$$
\begin{aligned}
E\left(S_{1}\right) & =m \mu_{R}=\frac{m(N+1)}{2} \\
\sigma_{S}^{2} & =V\left(S_{1}\right)=\frac{m n \sigma_{R}^{2}}{N-1}
\end{aligned}
$$

where $\mu_{R}=\frac{1}{N} \sum_{i} R\left(x_{i}\right)$ and $\sigma_{R}^{2}=\frac{1}{N} \sum_{i}\left(R\left(x_{i}\right)-\mu_{R}\right)^{2}$ Then, if $N \geq 30$, we have

$$
S_{1} \sim N\left(m \mu_{R}, \frac{m n \sigma_{R}^{2}}{N-1}\right)
$$

Note: if there are no ties, then

$$
\sigma_{R}^{2}=\frac{m n(N+1)}{2}
$$

To conduct a hypothesis test using this approximation, we follow these steps:

WRS Normal Approximation HT Steps

Step 1: State the null and alternative. For each different experimental setup we have:

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \geq F_{2}(x)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)$

Step 2: Our test statistic is

$$
Z=\frac{\left(S_{1}\right)_{\mathrm{obs}}-m \mu_{R}}{\sigma_{R}}
$$

Step 3: Calculate the p-value, this follows the same form as with normal approximation to the permutation test.

- A table for each alternate hypothesis p-value is given

[^1]| \mathbf{H}_{A} | p-value |
| :---: | :---: |
| $H_{A}: F_{1}(x) \leq F_{2}(x)\left(\mu_{1} \geq \mu_{2}\right)$ | $P(Z>z)$ |
| $H_{A}: F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \leq \mu_{2}\right)$ | $P(Z<z)$ |
| $H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)\left(\mu_{1} \neq \mu_{2}\right)$ | $2 P(Z>\|z\|)$ |

Step 4: If p-value $<\alpha$, reject H_{0}

Example 2.3.2 (Grad Exam Scores). Two years of graduate students exam scores for the pre qualifying exam were compared and the data is as follows:

	Mean Rank	Std. Dev of Rank	Sample Size
Year 1 (Group 1)	14.86	8.480	15
Year 2 (Group 2)	16.13	8.771	15
Overall	15.5	8.630	30

The department believes year 2 scored significantly higher than year 1. Perform a hypothesis test to find out if this is plausible.
(a) State H_{0} and H_{A}

- Solution: $H_{0}: F_{y r} 1(x)=F_{y r 2}(x)$ and $H_{A}: F_{y r 1}(x) \geq F_{y r 2}(x) \quad\left(\mu_{y r 1}<\mu_{y r 2}\right)$
(b) Calculate the appropriate test statistic and p-value using the large sample approximation
- Solution: The quantities we need in order to compute the Z statistic are the rank sum $\left(S_{1}\right)_{\text {obs }}$, mean of rank sum $E\left(S_{1}\right)$, and standard deviation of rank sum σ_{s}. We compute them below:

$$
\begin{gathered}
\mu_{S}=m \mu_{R}=(15)(15.5)=232.5 \\
\sigma_{S}^{2}=m n \sigma_{R}^{2} /(N-1)=(15)(15)\left(8.630^{2}\right) /(30-1) \approx 577.838 \\
\Longrightarrow \sigma_{S} \approx \sqrt{577.838} \approx 24.0383
\end{gathered}
$$

Hence,

$$
\begin{aligned}
W_{\text {obs }}=(\text { mean } & \left.=\frac{1}{m} \sum R\left(x_{i}\right)\right)(\text { sample size }=m)=(14.86)(15) \approx 222.9 \\
& \Longrightarrow Z=(222.9-232.5) / 24.0383=-0.399 \\
& \Longrightarrow p \text {-value }=P(Z<-0.399) \approx 0.3449
\end{aligned}
$$

(c) State your decision in terms of the problem

- Solution: Since p-value $>\alpha$ fail to reject H_{0}. We cannot conclude that there is a significant difference in the scores for the two years.

Note: when the p-value is very large or very small we do not need to specify $\alpha=$ 0.10, 0.05, 0.01

Now, there is no immediate Cl that is associated with WRS. So, we can't tell how large (extreme) a difference between population means are. But, there is another technique that has equivalent results for the HT and also has a Cl with it.

This is the Mann Whitney (MW) test. It has a very different structure but will yield the same results as the WRS, albeit with different assumptions.

As far as which to use either one, but MW has a natural extension to Cls so we can get more information about the groups should the null be false.

2.4 Appendix (Week 2)

We now prove stochastic dominance of one CDF over another implies the same relation with respect to the population means of the two distributions. In other words, we show $F_{1}(x) \leq F_{2}(x) \Rightarrow E\left(X_{1}\right)>E\left(X_{2}\right)$ and $F_{1}(x) \geq F_{2}(x) \Rightarrow E\left(X_{1}\right)<E\left(X_{2}\right)$ assuming the inequality holds for all x. We show a proof using continuous density functions as the underlying distributions are assumed to be continuous. All credit for this proof goes to Shitong Wei who introduced me to it during discussion in college.

Theorem 2.4.1 (Stochastic Dominance). For continuous random variables X_{1} and X_{2}

1. $F_{1}(x) \leq F_{2}(x) \Rightarrow E\left(X_{1}\right)>E\left(X_{2}\right)$
2. $F_{1}(x) \geq F_{2}(x) \Rightarrow E\left(X_{1}\right)<E\left(X_{2}\right)$

Proof. We prove the case (1), but case (2) is shown by permutation of inequality symbols. Suppose there is a number γ such that $F_{1}(x) \leq F_{2}(x)$ for all $x \in[\gamma, \infty)$. Then, we have

$$
\begin{equation*}
\int_{-\infty}^{c} F_{1}(x) d x \leq \int_{-\infty}^{c} F_{2}(x) d x \tag{2.4.1}
\end{equation*}
$$

for all $c \in[\gamma, \infty)$. Using the definition of the CDF for any random variable we simultaneously have

$$
\begin{equation*}
F_{j}(x)=\int_{-\infty}^{x} f_{j}(t) d t \quad \forall j \in\{1,2\} \tag{2.4.2}
\end{equation*}
$$

This lets us rewrite equation (2.4.2) as

$$
\begin{equation*}
\int_{-\infty}^{c} \int_{-\infty}^{x} f_{1}(t) d t d x \leq \int_{-\infty}^{c} \int_{-\infty}^{x} f_{2}(t) d t d x \tag{2.4.3}
\end{equation*}
$$

Now, the region $\mathcal{R}=(-\infty, c) \times(-\infty, x)$ looks like a triangle made from a the upper left part of a square (we treat $(-\infty, \infty)$ like a point, it's the bottom left corner of the square $\mathcal{S}=(-\infty, c) \times(-\infty, c))$. This allows us to make the change of variables we would normally do for triangles in calculus. Thus we can write the region of integration as $\mathcal{R}=(-\infty, c) \times(t, c)$ and equation (2.4.3) becomes

$$
\begin{equation*}
\int_{-\infty}^{c} \int_{t}^{c} f_{1}(t) d x d t \leq \int_{-\infty}^{c} \int_{t}^{c} f_{2}(t) d x d t \tag{2.4.4}
\end{equation*}
$$

Evaluating the integrals (the first is free of x so we can just take the difference of the upper and lower limits) we arrive at:

$$
\begin{equation*}
\int_{-\infty}^{c}(c-t) f_{1}(t) d t \leq \int_{-\infty}^{c}(c-t) f_{2}(t) d t \tag{2.4.5}
\end{equation*}
$$

which simplifies to:

$$
\begin{equation*}
\int_{-\infty}^{c} c f_{1}(t) d t-\int_{-\infty}^{c} t f_{1}(t) d t \leq \int_{-\infty}^{c} c f_{2}(t) d t-\int_{-\infty}^{c} t f_{2}(t) d t \tag{2.4.6}
\end{equation*}
$$

At this point (2.4.6) is valid for all real numbers c, and we will apply a limit to c to the infinite on both sides. Clearly,

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \int_{-\infty}^{c} c f_{j}(t) d t=\infty \quad \forall j \in\{1,2\} \tag{2.4.7}
\end{equation*}
$$

But what's interesting is that the evaluation is the same number for both f_{1} and f_{2} since they both have area 1 under their curves over infinity (take the ratio between the equations described by (2.4.7) and see that they evaluate to 1 ; same number over infinity). So, we can (as $c \rightarrow \infty$) remove both from the equality when we take the limit. This leaves the limit as

$$
\begin{equation*}
-\int_{-\infty}^{\infty} t f_{1}(t) d t \leq-\int_{-\infty}^{\infty} t f_{2}(t) d t \tag{2.4.8}
\end{equation*}
$$

which can be simplified into

$$
\begin{equation*}
\int_{-\infty}^{\infty} t f_{1}(t) d t \geq \int_{-\infty}^{\infty} t f_{2}(t) d t \tag{2.4.9}
\end{equation*}
$$

and by the definition of expected value this is equivalent to saying

$$
\begin{equation*}
E\left(X_{1}\right) \geq E\left(X_{2}\right) \tag{2.4.10}
\end{equation*}
$$

as we sought to show. This concludes the proof.

We will now prove some properties of ranks and S_{1} using the adjusted ranks, i.e. $R\left(x_{i}\right)=$ $\psi\left(R^{\prime}\left(x_{i}\right)\right)=\psi$ (ordinal rank). Keep in mind though the theorems are much easier to prove using ordinal ranks $\left(\right.$ set $\left.\psi\left(R^{\prime}\left(x_{i}\right)\right)=R\left(x_{i}\right)\right)$.

Theorem 2.4.2 (Mean of Rank Sums). We have

$$
E\left(S_{1}\right)=m \mu_{R}
$$

where μ_{R} is the average of the ranks, i.e. $\mu_{R}=(N+1) / 2$.

Proof. The expectation is linear, so we don't worry about rank dependence:

$$
E\left(S_{1}\right)=E\left(\sum_{\text {group } 1} \psi\left(R^{\prime}\left(x_{i}\right)\right)\right)=\sum_{\text {group } 1} E\left(\psi\left(R^{\prime}\left(x_{i}\right)\right)\right)=m \mu_{R}
$$

Now $\mu_{R}=\frac{1}{N} \sum_{i} \psi\left(R^{\prime}\left(x_{i}\right)\right)=(1+2+\cdots+N) / N=(N+1) / 2$. Note that the sum of adjusted ranks always equals the sum of the ordinals used to make the adjusted rank. This makes the form of the mean sound.

Theorem 2.4.3 (Rank Covariance). The covariance between any two adjusted ranks $\psi\left(R^{\prime}\left(x_{i}\right)\right), \psi\left(R^{\prime}\left(x_{j}\right)\right)$ is:

$$
\left.\operatorname{Cov}\left(\psi\left(R^{\prime}\left(x_{i}\right)\right), R^{\prime}\left(x_{j}\right)\right)\right)=-\frac{\sigma_{R}^{2}}{N-1}
$$

Proof. Note: for shorthand, we use $\psi\left(R^{\prime}\left(x_{i}\right)\right)$ as $\psi\left(R_{i}^{\prime}\right)$. We use the definition of covariance to yield

$$
\begin{equation*}
\operatorname{Cov}\left(\psi\left(R_{i}^{\prime}\right), \psi\left(R_{j}^{\prime}\right)\right)=E\left(\psi\left(R_{i}^{\prime}\right) \psi\left(R_{j}^{\prime}\right)\right)-E\left(\psi\left(R_{i}^{\prime}\right)\right) E\left(\psi\left(R_{j}^{\prime}\right)\right) \tag{2.4.11}
\end{equation*}
$$

Now, the average rank is always the same regardless of the specific rank in question so the product of the expectations is:

$$
\begin{equation*}
E\left(\psi\left(R_{i}^{\prime}\right)\right) E\left(\psi\left(R_{j}^{\prime}\right)\right)=\left(\frac{N+1}{2}\right)^{2}=\left[E\left(\psi\left(R_{i}^{\prime}\right)\right)\right]^{2} \tag{2.4.12}
\end{equation*}
$$

Now we work on the other part of (2.4.11), by the law of total expectation we
have:

$$
\begin{align*}
E\left[\psi\left(R_{i}^{\prime}\right) \psi\left(R_{j}^{\prime}\right)\right] & =\sum_{k} E\left[\psi\left(R_{i}^{\prime}\right) \psi(k) \mid \psi\left(R_{j}^{\prime}\right)=\psi(k)\right] P\left[\psi\left(R_{j}^{\prime}\right)=\psi(k)\right] \\
& \left.=\frac{1}{N} \sum_{k} \psi(k) E\left(\psi\left(R_{i}^{\prime}\right) \mid \psi\left(R_{j}^{\prime}\right)\right)=\psi(k)\right) \\
& =\frac{1}{N(N-1)} \sum_{k} \psi(k)\left[\sum_{l} \psi(I)-\psi(k)\right] \\
& =\frac{1}{N(N-1)} \sum_{k}\left[\psi(k) \frac{N(N+1)}{2}-\psi(k)^{2}\right] \tag{2.4.13}\\
& =\frac{1}{N(N-1)}\left[\left(\frac{N(N+1)}{2}\right)^{2}-\sum_{k} \psi(k)^{2}\right] \\
& =\frac{N}{N-1}\left(\frac{N+1}{2}\right)^{2}-\frac{E\left(\psi\left(R_{i}^{\prime}\right)^{2}\right)}{N-1} \\
& =\frac{N}{N-1}\left[E\left(\psi\left(R_{i}^{\prime}\right)\right)\right]^{2}-\frac{E\left(\psi\left(R_{i}^{\prime}\right)^{2}\right)}{N-1}
\end{align*}
$$

Putting (2.4.12) and (2.4.13) together gives a neat simplification:

$$
\begin{align*}
& =\left(\frac{N}{N-1}-1\right)\left[E\left(\psi\left(R_{i}^{\prime}\right)\right)\right]^{2}-\frac{E\left(\psi\left(R_{i}^{\prime}\right)^{2}\right)}{N-1} \\
& =\frac{\left[E\left(\psi\left(R_{i}^{\prime}\right)\right)\right]^{2}-E\left(\psi\left(R_{i}^{\prime}\right)^{2}\right)}{N-1} \tag{2.4.14}\\
& =-\frac{\sigma_{R}^{2}}{N-1}
\end{align*}
$$

as we sought to show.

Theorem 2.4.4 (Variance of Rank Sums). We have

$$
V\left(S_{1}\right)=\frac{m n \sigma_{R}^{2}}{N-1}
$$

Where $\sigma_{R}^{2}=E\left(\psi\left(R^{\prime}\left(x_{i}\right)\right)^{2}\right)-\left[E\left(\psi\left(R^{\prime}\left(x_{i}\right)\right)\right)\right]^{2}=\frac{1}{N} \sum_{i}\left(\psi\left(R^{\prime}\left(x_{i}\right)\right)-\mu_{R}\right)^{2}$
Proof. Since there is a covariance between the adjusted ranks (see Rank Covariance) we use
the definition of any sum of variances:

$$
\begin{aligned}
V\left(S_{1}\right) & =\sum_{\text {group } 1} V\left(\psi\left(R^{\prime}\left(x_{i}\right)\right)\right)+\sum_{i \neq j} \operatorname{Cov}\left(\psi\left(R^{\prime}\left(x_{i}\right)\right), \psi\left(R^{\prime}\left(x_{j}\right)\right)\right) \\
& =m \sigma_{R}^{2}-m(m-1) \frac{\sigma_{R}^{2}}{N-1} \\
& =\sigma_{R}^{2}\left(m-\frac{m^{2}-m}{N-1}\right) \\
& =\sigma_{R}^{2}\left(\frac{m N-m-m^{2}+m}{N-1}\right) \\
& =\sigma_{R}^{2} \frac{m n}{N-1}=\frac{m n \sigma_{R}^{2}}{N-1}
\end{aligned}
$$

$$
(N-m=n)
$$

as we sought to show.

Proposition 2.4.1 (Rank Variance). If there are no repeats in the data, i.e. we use ordinal ranks, then the rank sum variance σ_{S}^{2} can be computed as

$$
\sigma_{S}^{2}=\frac{m n(N+1)}{12}
$$

Proof. Notice the new simplified form of the rank variance σ_{R}^{2} since the data has ordinal ranks only:

$$
\begin{align*}
\sigma_{R}^{2} & =E\left(R(x)^{2}\right)-[E(R(x))]^{2} \tag{2.4.15}\\
& =\frac{1}{N} \sum_{k=1}^{N} k^{2}-\left[\frac{1}{N} \sum_{k=1}^{N} k\right]^{2} \tag{2.4.16}\\
& =\frac{1}{N}\left[\frac{N(N+1)(2 N+1)}{6}\right]-\left[\frac{(N+1)}{2}\right]^{2} \tag{2.4.17}\\
& =\frac{(N+1)(2 N+1)}{6}-\frac{(N+1)^{2}}{4} \tag{2.4.18}\\
& =\frac{(N+1)[2(2 N+1)-3(N+1)]}{12} \tag{2.4.19}\\
& =\frac{(N+1)(N-1)}{12} \tag{2.4.20}
\end{align*}
$$

Using Variance of Rank Sums we can readily compute the variance of the rank sum as

$$
\sigma_{S}^{2}=\frac{m n(N+1)(N-1)}{12(N-1)}=\frac{m n(N+1)}{12}
$$

as we sought to show.

Chapter 3
 Week 3: More 2-Sample Tests
 \& Comparisons

3.1 Lecture 7: Mann-Whitney Test

3.1.1 Mann-Whitney Test

The Mann-Whitney (MW) test is another form of the WRS test under the strict assumption that the distributions of the two samples have the same shape [3]. This feature allows us to make Cls about the space between the two distributions. What makes the MW test work is its ability to count how many observations from one group are below each observation from the other group. We define the setup for test as follows:

Let X_{1}, \ldots, X_{m} be our sample from group 1 , they are iid
Let Y_{1}, \ldots, Y_{n} be our sample from group 2, they are iid with the same shape as group 1's distn's
The steps for conducting a hypothesis test with this method are

MW Test Steps

Step 1: State H_{0} and H_{A}. As usual...(same questions to answer)

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x) \quad\left(\mu_{1} \geq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \geq F_{2}(x) \quad\left(\mu_{1} \leq \mu_{2}\right)$
$H_{0}: F_{1}(x)=F_{2}(x)$	$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x) \quad\left(\mu_{1} \neq \mu_{2}\right)$

Step 2: Calculate test statistic

- Our test statistic is ${ }^{2}$

$$
U_{M W}=\sum_{i} \sum_{j} \mathbf{1}\left(X_{i}<Y_{j}\right)+\frac{1}{2} \sum_{i} \sum_{j} \mathbf{1}\left(X_{i}=Y_{j}\right)
$$

where

$$
\mathbf{1}\left(X_{i}<Y_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } X_{i}<Y_{j} \\
0 & \text { o.w. }
\end{array} \quad \text { and } \quad \mathbf{1}\left(X_{i}=Y_{j}\right)= \begin{cases}1 & \text { if } X_{i}=Y_{j} \\
0 & \text { o.w. }\end{cases}\right.
$$

i.e., $U_{M W}=\left(\#\right.$ of pairs $\left(X_{i}, Y_{j}\right)$ where $\left.X_{i}<Y_{j}\right)+\frac{1}{2}$ (\# of pairs where $\left.X_{i}=Y_{j}\right)$

Note: if group 1 is lower than group $2, U_{M W}$ will be close to the maximum number of pairs. If group 1 is larger than group $2, U_{M W}$ will be close to 0 . Note the number of possible pairings is $m n$.
Step 3: Calculate the p-value

- Here the test statistic has its own known distribution the \mathbf{U} or Mann Whitney distribution. "Tail" percentiles of this distribution are found in table A4 online or in R.
- Let $U_{1-\alpha / 2}=(1-\alpha / 2) 100$ th percentile of U
- Let $U_{\alpha / 2}=(\alpha / 2) 100$ th percentile of U

Then the p -values for this test are ranges and are based off the alternative hypotheses (remember if group 1 is higher than group 2, then $U_{M W}$ is low, but it group 1 is higher than group 2, then $U_{M W}$ is high):

Hypothesis	Comp.	p-value
$H_{A}: F_{1}(x) \leq F_{2}(x)$	If $U_{M W}<U_{\alpha / 2}$	$<\alpha / 2$
$H_{A}: F_{1}(x) \geq F_{2}(x)$	If $U_{M W}>U_{1-\alpha / 2}$	$<\alpha / 2$
$H_{A}: F_{1}(x) \leq F_{2}(x)$ or $F_{1}(x) \geq F_{2}(x)$	If $U_{M W}<U_{\alpha / 2}$ or $U_{M W}>U_{1-\alpha / 2}$	$<\alpha$

Step 4: If p-value $<\alpha$, reject H_{0}

Example 3.1.1 (Gorilla Weights). The weight or gorillas of the same age in two zoos are:

$$
\begin{aligned}
& \text { Zoo 1: } 145,155,170,180 \\
& \text { Zoo 2: } 130,160,165,170
\end{aligned}
$$

[^2]
We want to test if gorillas in zoo 1 weigh more in general.

(a) State H_{0} and H_{A}

- Solution: $H_{0}: F_{1}(x)=F_{2}(x)$ vs. $H_{A}: F_{1}(x) \leq F_{2}(x) \quad\left(\mu_{1} \geq \mu_{2}\right)$
(b) List all possible pairs of observations $\left(X_{i}, Y_{j}\right)$
- Solution: There are $m n=(4)(4)=16$ total possible pairs; we list them below:

$(145,130)$	$(155,130)$	$(170,130)$	$(180,130)$
$\bullet(145,160)$	$\bullet(155,160)$	$(170,160)$	$(180,160)$
$\bullet(145,165)$	$\bullet(155,165)$	$(170,165)$	$(180,165)$
$\bullet(145,170)$	$\bullet(155,170)$	$\star(170,170)$	$(180,170)$

where (\bullet) means $\left(X_{i}<Y_{j}\right)$ and (\star) means $\left(X_{i}=Y_{j}\right)$
(c) Calculate the MW test statistic and the appropriate p-value

- Solution: The MW test statistic is

$$
\begin{aligned}
U_{M W} & =\left(\# \text { of pairs }\left(X_{i}<Y_{j}\right)\right)+\frac{1}{2}\left(\# \text { of pairs }\left(X_{i}=Y_{j}\right)\right) \\
& =6+\frac{1}{2}(1)=6.5
\end{aligned}
$$

In table A4 we have at $\alpha=0.05$ or $\alpha=0.10$

$$
U_{\alpha / 2}= \begin{cases}0 & \text { if } \alpha=0.05 \\ 1 & \text { if } \alpha=0.10\end{cases}
$$

Thus, since $U_{M W}>1, p$-value $>0.10 / 2=0.05$
(d) Interpret the p-value in terms of the problem

- Solution: If in reality the distribution of weights for gorillas was the same between the two zoos, we would observe our data (MW statistic) or more extreme more than 5% of the time. Hence, we fail to reject H_{0} and do not have evidence to declare the two populations (zoos) to be different in gorilla weights.

3.1.2 Cl for Shift Parameter

Instead of looking for a difference in means, medians, or totals between the two groups; we still assume the distributions have the same shape but one distribution is shifted some distance Δ from the other, this is a key assumption for the MW test. A graph of this idea is given below:

We call " Δ " the "shift parameter." This means we assume (for the picture above)

$$
F_{1}(x)=F_{2}(x+\Delta)
$$

which means that...

$$
P\left(X_{1} \leq x_{1}\right)=F_{1}(x)=F_{2}(x+\Delta)=P\left(X_{2} \leq x_{1}+\Delta\right)=P\left(X_{2}-\Delta \leq x_{1}\right)
$$

i.e., $P\left(X_{1} \leq x_{1}\right)=P\left(X_{2}-\Delta \leq x_{1}\right)$, so that X_{1} and $X_{2}-\Delta$ have the same distribution. X_{2} is higher than X_{1} on average, so we subtract by the shift parameter to get back X_{1} from X_{2}.

To find the Cl for Δ the shift parameter, we follow these steps:

CI for Shift Parameter Δ

Step 1: Find all $n m$ pair-wise differences, $X_{i}-Y_{j}$. Some will be positive and others will be negative.

Step 2: Order the pairwise differences and call them $\operatorname{pwd}(1), \ldots, \operatorname{pwd}(n m)$. Notice that these are order statistics.

Step 3: We want the locations, call them k_{a} and k_{b} such that

$$
P\left(\operatorname{pwd}\left(k_{a}\right) \leq \Delta \leq \operatorname{pwd}\left(k_{b}\right)\right)=1-\alpha
$$

Notice if we set $\operatorname{pwd}\left(k_{a}\right)=O_{\left(k_{a}\right)}$ and $\operatorname{pwd}\left(k_{b}\right)=O_{\left(k_{b}\right)}$, then the Cl becomes

$$
P\left(O_{\left(k_{a}\right)} \leq \Delta \leq O_{\left(k_{b}\right)}\right)=1-\alpha
$$

Which is the same form as we had for the population median's Cl . We can also state this relationship as

$$
P\left(k_{a}-1 \leq U \leq k_{b}\right)=1-\alpha
$$

Since in the extreme case where $O_{\left(k_{b}\right)}<0$, we have

$$
O_{\left(k_{a}\right)} \leq \Delta \leq O_{\left(k_{b}\right)} \Longrightarrow k_{a} \leq U \leq k_{b}
$$

Even if $O_{\left(k_{b}\right)} \nless 0$, the implication still holds as the bounds will be smaller and we can always get the same bounds as above as they are bigger. We finally adjust for the discrete nature of data: $k_{a} \mapsto k_{a}-1$. Remember, the discrete nature of the data is the reason we use $k_{a}-1$.

Thus we can use table A4 to find $U_{\alpha / 2}$ and $U_{1-\alpha / 2}$ and our locations for the Cl are: $k_{a}=U_{\alpha / 2}+1$ and $k_{b}=U_{1-\alpha / 2}$.
Essentially, we are using percentiles of U to find the locations for the bounds.

Example 3.1.2 (Theoretical Example). If $m=5, n=5$, and we want the $95 \% \mathrm{Cl}$, we go to $2.5 \%(\alpha / 2)$ and find the percentiles. They are $U_{\alpha / 2}=4$ and $U_{1-\alpha / 2}=21$. This makes the $C l$ for Δ as

$$
\begin{aligned}
& k_{a}=U_{\alpha / 2}+1=5 \text { th location for ordered pairwise difference } \\
& k_{b}=U_{1-\alpha / 2}=21 \text { st location for ordered pairwise difference }
\end{aligned}
$$

Thus, a 95\% confidence interval is $\left(O_{(5)}, O_{(21)}\right)=(p w d(5), p w d(21))$.

3.2 Lecture 8: Shift CI (cont.) \& KS Test

We examine another application of the shift Cl using the Mann-Whitney Test:

Example 3.2.1 (Gorilla Shift Cl). Recall the Gorilla example:

	pwd		pwd		pwd		pwd
$(145,130)$	15	$(155,130)$	25	$(170,130)$	40	$(180,130)$	50
$(145,160)$	-15	$(155,160)$	-5	$(170,160)$	10	$(180,160)$	20
$(145,165)$	-20	$(155,165)$	-10	$(170,165)$	5	$(180,165)$	15
$(145,170)$	-25	$(155,170)$	-15	$(170,170)$	0	$(180,170)$	10

Ordered Difference: $-25,-20,-15,-15,-10,-5,0,5,10,10,15,15,20,25,40,50$
Find the 90% CI for the shift parameter.

- Solution: To find the 90% CI we go to the section of the table for $\alpha / 2=0.10 / 2=5 \%$. Then, $m=n=4$, and going to that combination finds "lower" $=1$ (i.e. $U_{\alpha / 2}=1$) and "upper" $=15$ (i.e. $U_{1-\alpha / 2}=15$).

Our Cl is found using the locations

$$
k_{a}=U_{\alpha / 2}+1=2 \quad k_{b}=U_{1-\alpha / 2}=15
$$

I.e., our Cl is $(\operatorname{pwd}(2), \operatorname{pwd}(15))$ or $(20,40)$.

Note: As with most confidence interval For a difference we have three possible outcomes for our Cl: postive, negative, or neutral:
(i) If the Cl for Δ has both bounds >0, this suggests group 1's distribution is larger than group two's distribution.
(ii) If the Cl for Δ has both bounds <0, this suggests group 1 's distribution is smaller than group two's distribution.
(iii) In the Cl for Δ contains zero, then it suggests that there is no significant difference between the two distributions.

We will now cover a popular technique that can be used to compare two distributions or compare one group to a named distribution. This technique allows us to explicitly see if $F_{1}(x) \neq F_{2}(x)$.

3.2.1 Kolmogarov Smirnov (KS) Test

Unlike the previous tests which test sees if there is a difference based on a certain statistic (mean, median, total, etc...), the KS test looks for any type of difference (spread, center, etc...). To perform this test, we follow these steps:

KS Test Steps

Step 1: The KS test uses an absolute difference, so there is only one pair of hypotheses:

$$
H_{0}: F_{1}(x)=F_{2}(x) \quad H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)
$$

Step 2: The test statistic simply measures the largest difference between the empirical CDFs. For notation:

$$
\begin{aligned}
& \text { Let } \hat{F}_{1}(x)=\text { empirical (observed) CDF or group } 1 \\
& \text { Let } \hat{F}_{2}(x)=\text { empirical (observed) CDF or group } 2
\end{aligned}
$$

On order to obtain the test statistic, we

1. Combine the data from both groups into one set, S
2. Calculate $\hat{F}_{1}(x)$ for group 1 using both groups observations and $\hat{F}_{2}(x)$ for group 2 using both groups observations
3. Calculate the difference between $\left|\hat{F}_{1}(x)-\hat{F}_{2}(x)\right|$ for all $x \in S$
4. Our test statistic is then the maximum of these differences

$$
K_{s}=\max _{x}\left|\hat{F}_{1}(x)-\hat{F}_{2}(x)\right|
$$

Step 3: The p-value is a permutation p-value (same form)

$$
\frac{\left(\# \text { of }\left|\hat{F}_{1}(x)-\hat{F}_{2}(x)\right| \geq K_{s}\right)}{\binom{n+m}{m}}
$$

Step 4: If p-value $<\alpha$, reject H_{0}

Example 3.2.2 (Machine Dispensing). A machine is supposed to dispense 160 oz a liquid. Measurements were taken before and after maintenance:

Before:	16.55	15.36	15.95	16.43	16.01
After:	16.05	15.98	16.10	15.88	15.91

We want to test if the distribution of the liquid was the same before and after maintenance.

We only are interested if they are the same or not, not so much the direction of the change, hence we use the KS test.
(a) State H_{0} and H_{A}

- Solution:

$$
H_{0}: F_{1}(x)=F_{2}(x) \quad H_{A}: F_{1}(x) \leq F_{2}(x) \text { or } F_{1}(x) \geq F_{2}(x)
$$

(b) Calculate the KS test statistic

- Solution: a table summarizing the process of calculating the test statistic is as follows:

Group	1	2	2	1	2	1	2	2	1	1
Data	15.36	15.88	15.91	15.94	15.98	16.01	16.05	16.10	16.43	16.55
$\hat{F}_{1}(x)$	$1 / 5$	$1 / 5$	$1 / 5$	$2 / 5$	$2 / 5$	$3 / 5$	$3 / 5$	$3 / 5$	$4 / 5$	1
$\hat{F}_{2}(x)$	0	$1 / 5$	$2 / 5$	$2 / 5$	$3 / 5$	$3 / 5$	$4 / 5$	1	1	1
\mid Diff	$1 / 5$	0	$1 / 5$	0	$1 / 5$	0	$1 / 5$	$2 / 5$	$1 / 5$	0
$\Longrightarrow K_{s}=\max \mid$ Diff $\mid=2 / 5$										

(c) Find the p-value associated with your test statistic:

- Solution: For the 252 possible permutations, the relative frequency of K_{s} follows:

K_{s}^{*}	0.2	0.4	0.6	0.8	1
$P\left(K=K_{s}^{*}\right)$	$32 / 252$	$130 / 252$	$70 / 252$	$18 / 252$	$2 / 252$

The p-value is thus:

$$
P\left(K \geq K_{s}\right)=P(K \geq 2 / 5)=\frac{130+70+18+2}{252} \approx 0.873
$$

(d) Interpret the p-value in terms of the problem

- Solution: If in reality the distribution of ounces dispensed before and after repair were the same; we would observe our test statistic or more extreme (greater) with probability 0.873.
(e) Give your conclusion
- Solution: Since p-value >0.05, we do not have enough evidence to reject H_{0}. Conclude H_{0}, the distributions are the same.

We give now a summary of all two sample tests that we have shown so far:

All two-sample tests

1. Permutation tests
2. Wilcoxon-Rank-Sum
3. Mann-Whitney
4. Kolmogorov Smirnov

Next we will discuss power simulations for certain comparisons of the above.

3.3 Lecture 9: Comparison of Two-Sample Tests

3.3.1 Comparison of Two-Sample Tests

First, we compare $D_{i}=$ (power of t-test - power of permutation test) when the data is normal (best case scenario for a t-distribution. We give a table of the results; note that the groups simulated are balanced (equal numbers), i.e. $m=n$. We only give the size of one group.

		R (\# of simulations)						
α	sample size	100	200	400	800	1600	3200	
		D_{i}						
0.01	10	0.087	0.048	0.032	0.015	0.014	0.010	
0.01	20	0.093	0.040	0.021	0.015	0.009	0.007	
0.05	10	0.029	0.019	0.017	0.010	0.005	0.008	
0.05	20	0.012	0.008	0.006	0.005	0.008	0.003	

Notice that even in the best case scenario for a t-test, as long as R is large then there is very little difference in power for the permutation test vs t-test (values on the far right are close to 0 in all cases).

Next we will compare using the mean and median with the permutation test vs the WRS test. In the the table that follows

$$
\text { Let } D_{i}=\mid \text { power for WRS }- \text { power for permutation } \mid \quad R=1600
$$

and the winning test (with the higher power) is given in parenthesis.

simulated dist.	statistic	$\mathrm{m}=\mathrm{n}=10$	$\mathrm{~m}=\mathrm{n}=20$
		D_{i}	
Normal	mean	$0.045(\mathrm{P})$	$0.027(\mathrm{P})$
	median	$0.031(\mathrm{~W})$	$0.059(\mathrm{~W})$
Laplace	mean	$0.035(\mathrm{~W})$	$0.080(\mathrm{~W})$
	median	$0.033(\mathrm{P})$	$0.024(\mathrm{P})$
Cauchy	mean	$0.276(\mathrm{~W})$	$0.502(\mathrm{~W})$
	median	$0.080(\mathrm{P})$	$0.084(\mathrm{P})$

In summary,

Distribution	Statistic	Winner
Symmetric	mean	P
Symmetric	median	WRS
Asymmetric	mean	WRS
Asymmetric	median	P

This gives you an idea of when to use what test.
Note: KS is mainly used when you have no preference for a specific statistic. It is a more sensitive test and can find differences in center and spread of a distribution. But it does not give direction of the difference.

3.3.2 Tests for three or more groups

We now discuss methods for comparing distributions of 3 or more groups. This is nonparametric ANOVA. In the text that follows we adopt the notations:

Notation: Assume we have k groups, then let...

- $X_{i j}=j$ th observation from i th group
- $n_{i}=$ sample size of i th group
- $\bar{x}_{i}=$ sample mean of ith group
- $s_{i}^{2}=$ sample variance of i th group
- $N=$ overall sample size $=\sum_{i}^{k} n_{i}$
- $\bar{x}=$ overall sample mean $=\sum_{i}^{k} n_{i} \bar{x}_{i} / N$

The overall idea is the same as in ANOVA-we compare the difference in means to the overall mean and to the spread of each group.

Recall that

$$
\begin{aligned}
& S S T=\text { Sum of Squares Treatment }=\sum_{i=1}^{k} n_{i}\left(x_{i}-\bar{x}\right)^{2} \\
& M S T=\text { Mean Sum of Squares Treatment }=S S T /(k-1)
\end{aligned}
$$

These measure the difference between groups.

Also,

$$
\begin{array}{r}
S S E=\text { Sum of Squares Error }=\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2} \\
M S E=\text { Mean Sum of Squares Error }=S S E /(N-k)
\end{array}
$$

These measure the variances within each group. Our test statistic F_{s} compares how big the variation between groups is to that within each group. In other words,

$$
F_{s}=\frac{M S T}{M S E}
$$

Notice...

- When F_{s} is large \Rightarrow variance between groups is larger than that within groups \Rightarrow means are significantly different
- When F_{s} is small \Rightarrow variance between groups is smaller than that within groups \Rightarrow means are not significantly different

Traditionally, ANOVA makes the following assumptions:

ANOVA Assumptions

1. Random samples are taken from all k groups
2. Measurements from all k groups are independent (observing one does not change what can be observed for the others)
3. $\sigma_{1}=\sigma_{2}=\sigma_{3}=\cdots=\sigma_{k}$ (Assessed by Levenes Test)
4. $\epsilon_{i j} \stackrel{i i d}{\sim} N\left(0, \sigma_{\epsilon}^{2}\right)$ (Assessed by QQ Plot or Shapiro-Wilks Test)

Then $F_{s} \sim F_{[k-1, N-k]}$ distribution.
But when the assumptions do not hold, we do not know what the distribution of F_{s} is. However, we can find a permutation distribution under the assumption that all of the groups have the same mean (center). In order to conduct this test, we follow these steps:

Steps for ANOVA Permutation Test

Step 1: State the hypotheses.

- The null and alternative are

$$
\begin{aligned}
& H_{0}: F_{1}(x)=F_{2}(x)=\cdots=F_{k}(x) \\
& H_{A}: F_{i}(x) \leq F_{j}(x) \text { or } F_{i}(x) \geq F_{j}(x) \text { for some } i \neq j
\end{aligned}
$$

Step 2: Calculate the observed statistic:

$$
F_{\mathrm{obs}}=\frac{M S T}{M S E}
$$

Step 3: Find the permutation p-value

- There are $N!/ n_{1}!n_{2}!\ldots n_{k}!$ total permutations, and this value is typically unmanageable, so we use random permutations. The process is:

1 Randomly assign the N observations into the k groups $R>4000$ times (null lets us do this)

2 Calculate the R values of F_{s}, denoted F_{i}
3 Our p-value is (\# of $F_{i} \geq F_{\text {obs }} / R$)
Step 4: If p-value $<\alpha$, reject H_{0}

3.4 Appendix (Week 3)

We give an explaination for as to why the MW test gives identical results to the WRS test.

Theorem 3.4.1 (MW and WRS Equivalence). The test statistics used for the MW test and WRS test yeild identical results, i.e.

$$
U_{M W}=\varphi\left(U_{W R S}\right)
$$

for some function φ.
Proof. Notice that $U_{M W}$ gives the number of observations of group 2 that are greater than those of group 1, taking into account for ties between the data sets. Notice that when the two groups are put into the same data set, the rank of any entry in group 2 tells us the number of observations (either from group 1 or group 2) that are less than the current entry in group 2. For example, if $R(x)=5$ where $x \in$ Group 2, then there are 5 observations less than this observation from group 2; they could be in either group though. If we were to sum these ranks only for group 2, then we get the total number of observations that are less than the ones in group 2, including those in group 2 themselves. To get only those observations that are from group 1, we subtract the total amount of obervations from group 2 that are counted as we sum. This would be $1+2+3+\cdots+n_{2}$ in sum this becomes

$$
\frac{n_{2}\left(n_{2}+1\right)}{2}
$$

Hence, the quantity that gives the number of observations from group 1 that are less than those from group 2 is

$$
U_{M W}=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}
$$

But, notice that $R_{2}=U_{W R S}$ so $U_{M W}=\varphi\left(U_{W R S}\right)$ as we sought to show. This leads to the exact same inferecnes since the p-value has form:

$$
P\left(U_{M W} \geq u_{M W}\right)=P\left(R_{2} \geq r_{2}\right)
$$

so the results are the same. This concludes the proof.
Note: This proof was adapted from ideas in [7].

Chapter 4
 Week 4: More Non-Parametric

ANOVA

4.1 Lecture 10: ANOVA Permutation \& KW Test

We begin with an example of the ANOVA permutation test from the previous lecture.

Example 4.1.1 (Mice \& Dye). Mice were fed three amounts of red dye "Low," "Medium," and "High." To test effect of these dyes, one group was also given a "Control" dye. The time to death in weeks was measured with summary statistics below:

	Control	Low	Medium	High
Mean	91.36	71.88	72.40	65.25
Std. Dev.	11.01	11.59	22.14	28.06
n_{i}	11	9	10	8

(a) What assumptions may be violated based on the above?

- Solution: While we cannot assess normality, it does seem that the standard deviations by group may not be equal (medium and high are twice as large as control and low).
(b) State the appropriate null and alternative.
- Solution:

$$
\begin{aligned}
& H_{0}: F_{1}(x)=F_{2}(x)=\cdots=F_{k}(x) \\
& H_{A}: F_{i}(x) \leq F_{j}(x) \text { or } F_{i}(x) \geq F_{j}(x) \text { for some } i \neq j
\end{aligned}
$$

(c) Calculate the observed value of the test statistic.

- Solution: If we know MST $=1266.68$, then

$$
\begin{aligned}
S S E=\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2} & =10(11.01)^{2}+8(11.59)^{2}+9(22.14)^{2}+7(28.06)^{2} \\
& =12213
\end{aligned}
$$

and

$$
\begin{aligned}
& M S E=12213 /(38-4)=359.22 \\
& \Longrightarrow F_{\text {obs }}=M S T / M S E=1266.68 / 359.22=3.5262
\end{aligned}
$$

(d) Calculate the p-value or estimate it.

- Solution: Based on $R=5000$ permutations, we found the following permutation distribution of F:

F^{*}	1	2	3	4	5	6	7
$P\left(F \geq F^{*}\right)$	0.31975	0.1495	0.047	0.018	0.008	0.005	0.002

Since $F_{\text {obs }}=3.5262$ is between 3 and 4 our p-value is between 0.018 and 0.047 .
(e) How many possible permutations were possible?

- Solution: This would be an extension of the binomial coefficient, called the multinomial coefficient where the groups are the treatment and control groups:

$$
\frac{38!}{11!9!10!8!}=2.467 \times 10^{20}
$$

(f) State your conclusion in terms of the problem if $\alpha=0.05$.

- Solution: The p-value is $<\alpha$, so we reject H_{0}. We conclude that at least one of the distributions of time until death is different between the dosage groups, i.e. at least one mean comparison leads to inequality. Based on the data, which groups do you think are most likely to differ?

4.1.1 Kruskall-Wallis (KW) Test

Similar to the WRS test, KW test uses ranks rather than the actual data $\left(X_{i j}\right)$ values. We can use this if we have outliers and need a large sample to work with. This test also allows us to make confidence intervals for differences in ranks. The process for the test is quite the same is with all permutation tests: (Data) \Rightarrow (Test Statistic) \Rightarrow (Permutation Distribution) \Rightarrow (p-value) \Rightarrow (Decision). To conduct this test, we follow the following steps:

KW Test Steps

Step 1: State H_{0} and H_{A}

- Same as with permutation ANOVA:

$$
\begin{aligned}
& H_{0}: F_{1}(x)=F_{2}(x)=\cdots=F_{k}(x) \\
& H_{A}: F_{i}(x) \leq F_{j}(x) \text { or } F_{i}(x) \geq F_{j}(x) \text { for some } i \neq j
\end{aligned}
$$

Step 2: Calculate the test statistic

- By definition, we have

$$
\begin{aligned}
K W_{\text {obs }} & =\frac{1}{S_{R}^{2}} \sum_{i=1}^{k} n_{i}\left(\bar{R}_{i}-\frac{N+1}{2}\right)^{2} \\
& =\frac{\text { variability of ranks between groups }}{\text { overall variability of ranks }}
\end{aligned}
$$

Where $S_{R}^{2}=$ variance or ranks regardless of groups (overall variance).
Note: This form of the KW test works when ties are present or not.
Step 3: Calculate the approximate permutation p-value

- Permute the groups R times find $K W_{i}$ for all R permutations. Then,

$$
\text { p-value }=\left(\# \text { of } K W_{i} \geq K W_{\text {obs }}\right) / R
$$

Step 4: Reject H_{0} if p-value $<\alpha$

Note: The (KW) test will have higher power than a permutation test when:

1. Outliers are present
2. The distribution of one or more groups is skewed
3. The distribution of one or more groups has "heavy tails"

4.1.2 Large Sample Approximation to KW

If the n_{i} 's are large but an assumption of ANOVA is violated we may use a large sample approximation to the KW test.

Motivation: In traditional ANOVA, we know that $S S T / \sigma_{\epsilon}^{2}$ is distributed χ^{2} with d.f. $=k-1$. Now, for the KW test we replace the data $X_{i j}$ with ranks $R_{i j}$ (the corresponding ranks). We then can show that $S S T_{R}=\sum_{i=1}^{k} n_{i}\left(\bar{R}_{i}-\frac{N+1}{2}\right)^{2}$. But, the normalizing constant for the χ^{2} distribution has changed (since we are using $R_{i j}$). It follows that since \bar{R}_{i} is an average, that over large samples, it will be approximately normally distributed with mean $\mu_{\bar{R}_{i}}=(N+1) / 2$ and variance $S_{\bar{R}_{i}}^{2}$ or

$$
\bar{R}_{i} \sim N\left(\frac{N+1}{2}, S_{\bar{R}_{i}}^{2}\right)
$$

To get an idea as to how we could turn \bar{R}_{i} into a test statistic, we will assume no ties in the data and use ordinal ranks. If this is the case, then $E\left(\bar{R}_{i}\right)=(N+1) / 2$ and we derive the variance as follows:

$$
\begin{aligned}
V\left(\bar{R}_{i .}\right) & =\frac{1}{n_{i}^{2}}\left[\sum_{j=1}^{n_{i}} V\left(R_{i j}\right)+\sum_{j \neq k} \operatorname{Cov}\left(R_{i j}, R_{i k}\right)\right] \\
& =\frac{1}{n_{i}^{2}}\left[n_{i} S_{R}^{2}+\left(n_{i}\right)\left(n_{i}-1\right) \frac{S_{R}^{2}}{N-1}\right] \\
& =\frac{1}{n_{i}^{2}}\left[\frac{n_{i}\left(N^{2}-1\right)}{12}+\frac{\left(n_{i}\right)\left(n_{i}-1\right)(N+1)}{12}\right] \quad\left(S_{R}^{2}=\frac{N^{2}-1}{12} ; \text { no ties }\right) \\
& =\frac{1}{n_{i}^{2}}\left[\frac{n_{i}(N+1)\left(N-n_{i}\right)}{12}\right] \\
& =\frac{(N+1)\left(N-n_{i}\right)}{n_{i}(12)}=\frac{(N+1) N}{n_{i}(12)}-\frac{1}{12} \approx \frac{(N+1) N}{n_{i}(12)}
\end{aligned}
$$

It naturally then follows that

$$
\frac{\bar{R}_{i .}-E\left(\bar{R}_{i .}\right)}{\sqrt{V\left(\bar{R}_{i .}\right)}} \sim N(0,1) \quad \text { (approx.) }
$$

and thus

$$
\left(\frac{\bar{R}_{i .}-E\left(\bar{R}_{i .}\right)}{\sqrt{V\left(\bar{R}_{i .}\right)}}\right)^{2} \sim \chi_{[1]}^{2} \quad \text { (approx.) }
$$

making

$$
\sum_{i=1}^{k}\left(\frac{\bar{R}_{i .}-E\left(\bar{R}_{i .}\right)}{\sqrt{V\left(\bar{R}_{i .}\right)}}\right)^{2}=\sum_{i=1}^{k}\left(\frac{n_{i}\left[\bar{R}_{i .}-(N+1) / 2\right]^{2}}{N(N+1) / 12}\right)=\frac{N-1}{N\left(S_{R}^{2}\right)} \sum_{i=1}^{k} n_{i}\left[\bar{R}_{i .}-N(N+1) / 2\right]^{2} \sim \chi_{[k-1]}^{2}
$$

Notice if N is large enough, then $N-1 / N \approx 1$. This makes our new statistic as

$$
\frac{1}{S_{R}^{2}} \sum_{i=1}^{k} n_{i}\left[\bar{R}_{i .}-N(N+1) / 2\right]^{2} \sim \chi_{[k-1]}^{2}
$$

Hence, it is suggested that the constant "c" s.t.

$$
E\left[c\left(S S T_{R}\right)\right]=k-1
$$

is $c=1 / S_{R}^{2}$ since it normalizes $S S T_{R}$ so each summand is the square of a standard normal variate [7] [1].

This gives the statistic as

$$
K W=\frac{1}{S_{R}^{2}} \sum n_{i}\left(\bar{R}_{i .}-\frac{N+1}{2}\right)^{2}
$$

and $K W \sim \chi_{[k-1]}^{2}$. Thus, the 4 steps to conduct a hypothesis test using this approximation are:

Normal Approximation to KW Test Steps

Step 1: State H_{0} and H_{A}

$$
\begin{aligned}
& H_{0}: F_{1}(x)=F_{2}(x)=\cdots=F_{k}(x) \\
& H_{A}: F_{i}(x) \leq F_{j}(x) \text { or } F_{i}(x) \geq F_{j}(x) \text { for some } i \neq j
\end{aligned}
$$

Step 2: Calculate the test statistic

$$
K W=\frac{1}{S_{R}^{2}} \sum n_{i}\left(\bar{R}_{i .}-\frac{N+1}{2}\right)^{2}
$$

Step 3: Calculate the p -value p -value $=P\left(\chi_{[k-1]}^{2}\right) \geq K W$
Step 4: If p-value $<\alpha$, reject H_{0}

4.2 Lecture 11: KW Example \& Mult. Comparisons

We begin with an example using the large sample approximation for the KW test.

Example 4.2.1 (Food Saltiness). The saltiness score from 0 to 5 for three food products was recorded with the following summary statistics:

	I	II	III
\bar{x}_{i}	4	2.62	1.67
s_{i}	1.15	1.41	0.82
\bar{R}_{i}	15.86	10.31	6.25
n_{i}	7	8	6

where $S_{R}^{2}=36.9$.
(a) Name an assumption for parametric ANOVA and how we would assess it.

- Solution: The data we are given isn't alone to determine if what we sampled came from a Normal Distribution, so we have to use a Q-Q Plot and/or ShapiroWilks Test to assess normality. Also, looking at the sample standard deviations s_{i}, we can see some variation, giving reason to assess equal population variances via Levene Test.
(b) Find the test statistic and p-value for the large sample approximation to KW
- Solution: Following the form given,

$$
\begin{aligned}
K W_{\text {obs }} & =\frac{1}{S_{R}^{2}} \sum n_{i}\left(\bar{R}_{i .}-\frac{N+1}{2}\right)^{2} \\
& =\frac{1}{36.9}\left[7(15.86-11)^{2}+8(10.31-11)^{2}+6(6.25-11)^{2}\right] \\
& =8.252
\end{aligned}
$$

Since $k=3$, we know $d f=k-1=3-1=2$. This implies

$$
P\left(\chi_{[2]}^{2}>8.252\right) \in[0.01,0.025] \quad \text { (by chi-squared table) }
$$

(c) Suppose the permutation p-value based on 5000 random permutations is 0.0094 . If $\alpha=0.01$, do your conclusions from (b) and the permutation test agree? Explain.

- Solution: They don't. We would fail to reject H_{0} for the large sample approximation but reject for the permutation test. It appears that the permutation test is more strict in assessing group differences.
(d) What should be taken into account when choosing which non-parametric test to use?
- Solution: We should consider the distribution of each group, if there are any
outliers, and if the assumptions of parametric ANOVA are violated. If they aren't, then a non-parametric test will have lower power than a parametric one.

The next question to consider when we reject the null is, "which groups are different?" The tests we have made only detect if any difference is present, to make a better inference it helps to know where the differences are. Now, if we have K groups there are $\binom{k}{2}$ possible pair wise combinations that can be made.
However, if we create ($\binom{k}{2}$ hypothesis tests or (Cls) for comparing the groups (which would identify which groups were different), we would have the problem of multiple comparisons as we are making what are known as simultaneous inferences.

4.2.1 Corrections for Multiple Comparisons

Suppose we make " g " total Cls (or HTs). Then, we have the definitions:

Definition 4.2.1 (Error Rate/Confidence).

$$
\begin{aligned}
\text { "Overall" Error Rate } & =\text { Chance of at least one Type I error out of " } g \text { " Cls } \\
& =\text { Opposite of Chance no Type I Errors } \\
& =1-\text { Chance of no Type I Errors } \\
& =1-(1-\alpha)^{g}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { "Overall" Confidence } & =\text { Confidence in all Cls Simultaneously } \\
& =\text { All Cls "Correct" (contain parameter of interest) } \\
& =(1-\alpha)^{g}
\end{aligned}
$$

Also, recall that α is the probability of Type I Error for a single $\mathrm{HT} / \mathrm{Cl}$. Notice that when we make many Cls the overall confidence decreases (since $(1-\alpha) \in(0,1)$ implies for any $g \in \mathbb{N}$ that $\left.(1-\alpha)^{g}<(1-\alpha)\right)$.
A way to correct for this is to use a Bonferroni correction and make corrected simultaneous family-wise Cls. The correction makes use of Boole's Inequality which we state for reference:

Boole's Inequality: For any events E_{i} where $i \in\{1, \ldots, n\}$, we have

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} P\left(E_{i}\right)
$$

We now state Bonferroni's Correction:

Theorem 4.2.1 (Bonferroni's Correction). For g family-wise Cls with confidence $1-\alpha$, we have

$$
\begin{gathered}
(1-\alpha)^{g} \leq(1-\alpha / g)^{g} \leq 1-\alpha \\
\Longleftrightarrow(1-\alpha)-(1-\alpha)^{g} \geq(1-\alpha)-(1-\alpha / g)^{g}
\end{gathered}
$$

Proof. We first prove $(1-\alpha)^{g} \leq(1-\alpha / g)^{g}$. Clearly, $1-\alpha \leq 1-\alpha / g$ since $\alpha>\alpha / g$ since g is by definition greater than 1 . It then naturally follows that $(1-\alpha)^{g} \leq(1-\alpha / g)^{g}$ since x^{g} is an increasing fuction for all positive x.

Now we prove the next equality. Suppose we have g Cls with Type I Error rate α / g. If we denote events $E_{i}=$ Chance of no Type I Error, we have $P\left(E_{i}\right)=(1-\alpha / g)$. We then proceed as follows:

$$
\begin{aligned}
P\left(\bigcap_{i=1}^{g} E_{i}\right) & =(1-\alpha / g)^{g} \\
& =1-P\left(\bigcup_{i=1}^{g} E_{i}^{c}\right) \\
& \leq 1-\sum_{i=1}^{g} P\left(E_{i}^{c}\right) \\
& =1-g(\alpha / g) \\
& =1-\alpha
\end{aligned}
$$

(Boole's Ineq.)

Hence, $(1-\alpha / g)^{g} \leq 1-\alpha$. From here, we have the first statement in the biconditional, the second follows by subtracting $1-\alpha$ on both sides and multiplying by -1 . This concludes the proof.

Remark 4.2.1. The correction is simple, make all the individual Cls have confidence level $(1-\alpha / g) 100 \%$ instead of each having $(1-\alpha) 100 \%$. This increases the width of all individual Cls but keeps the overall error rate controlled at $\leq \alpha$ using $\alpha=0.10,0.05,0.01$.

We now give an example illustrating this technique.

Example 4.2.2 (Error Analysis). Suppose $\alpha=0.05$. Then we can construct a table showing the "overall" error for regular intervals and intervals using the Bonferroni correction.

g	1	3	6	10	30
No Bonferroni: $1-(1-\alpha)^{g}$	0.05	0.1426	0.2649	0.401	0.78
Bonferroni: $1-(1-\alpha / g)^{g}$	0.05	0.0492	0.0490	0.0489	0.04881

Notice the error rate is stable for Bonferroni Corrected intervals (less variance about 0.05).

In interpretation, all we add is "we are corrected/family-wise/Bonferroni/simultaneous/overall $(1-\alpha) 100 \%$ confident..."

In short, for Bonferroni Correction: anywhere you would use α replace it with α / g.
With this method, we can make cutoffs for group comparisons, i.e. if the observed group differences are greater than some threshold value, the groups are most likely different. The Bonferroni Cutoff is as follows:

Bonferroni Cutoff (Non-Parametric Version): If $\left|\bar{R}_{i}-\bar{R}_{j}\right| \geq z_{1-\alpha / 2 g} \sqrt{S_{R}^{2}\left(1 / n_{i}+1 / n_{j}\right)}$, then the average ranks for group i and j are significantly different.

There is also another choice when making pairwise comparisons. This is known as Tukey's Honest Significant Difference (HSD). The parametric version of this test is

- If $\left|\bar{x}_{i}-\bar{x}_{j}\right| \geq q(\alpha, k, d f=N-k) \sqrt{M S E\left(1 / n_{i}+1 / n_{j}\right)}$ where $q(\cdot)$ denotes the Tukey table distribution, then the averages of group i and j are significantly different.

To make the non-parametric version, we replace everything that involved $X_{i j}$ with $R_{i j}$. Thus,
HSD (Non-Parametric Version): If $\left|\bar{R}_{i}-\bar{R}_{j}\right| \geq q(\alpha, k, d f=N-k) \sqrt{\left(S_{R}^{2} / 2\right)\left(1 / n_{i}+1 / n_{j}\right)}$, then the average ranks for group i and j are significantly different.

We now give some notation to make work easier when conducting hypotheses:

Cutoff Notation:

- Let $B O N=$ the Bonferroni cutoff $=z_{1-\alpha / 2 g} \sqrt{S_{R}^{2}\left(1 / n_{i}+1 / n_{j}\right)}$
- Let $H S D=$ the Tukey cutoff $=q(\alpha, k, d f=N-k) \sqrt{\left(S_{R}^{2} / 2\right)\left(1 / n_{i}+1 / n_{j}\right)}$

Example 4.2.3 (Salt Example (cont.)). In the salt example we can calculate BON, HSD, and $\left|\bar{R}_{i}-\bar{R}_{j}\right|$. Let $\alpha=0.05$. Find which groups are significantly different.

- Solution: There are $\binom{3}{2}=3$ possible pairwise comparisons. We compute on possible
comparison, it is between I and III:

$$
\begin{aligned}
z_{1-0.05 / 2(3)} & =2.39 \text { and } \\
\sqrt{S_{R}^{2}(1 / 7+1 / 8)} & =3.14 \\
\Longrightarrow B O N & =8.07
\end{aligned}
$$

If we keep computing, we arrive at this table:

	I vs. II	I vs. III	II vs. III
$\left\|\bar{R}_{i}-\bar{R}_{j}\right\|$	$\|15.86-10.31\|$	$\|15.86-6.25\|$	$\|10.31-6.251\|$
	$=5.55$	$\mathbf{9 . 6 1}$	$=4.06$
$B O N$	7.51	$\mathbf{8 . 0 7}$	7.84
HSD	8.03	$\mathbf{8 . 6 2}$	8.37

Thus, groups I and III have significantly different average ranks.

Chapter 5

Week 5: Group Comparisons (cont.)

\& Linear Tests

5.1 Lecture 12: Permutation Cutoffs/Rev. of Linear Tests

5.1.1 Permutation Cutoffs for HSD and Bonferroni

If we have low amount of data to work with, we can also find permutation based versions of Tukey's HSD criteria by approximating $q(\cdot)$. Or, if we prefer, we can find $\binom{k}{2}$ permutation $H T s$ for two groups and compare the p-values to α / g (Bonferroni correction).

For Tukey's permutation HSD, the steps to find the cutoff are as follows:

Tukey's Permutation HSD:

Step 1: Randomly shuffle each observation into a group, R $>\mathbf{4 0 0 0}$ times (as with nonparametric ANOVA)
Step 2: Pick a comparison (dispersion) measure, $T_{i j}$. Common values are $\left|\bar{x}_{i}-\bar{x}_{j}\right|, \mid \bar{R}_{i}-$ $\bar{R}_{j}|$,$| median _{i}-$ median $_{j} \mid$, and $\left(\bar{x}_{i}-\bar{x}_{j}\right) / \sqrt{M S E\left(1 / n_{i}+1 / n_{j}\right)}$.
Step 3: For each R permutation, calculate $Q_{R}=\max _{i, j}\left|T_{i j}\right|$. We choose the maximum out of all the group comparisons since under the null, all groups are identical in distribution and center.

Step 4: Let $q^{*}(\alpha)$ be the $(1-\alpha) 100 \%$ percentile of Q. Then, groups i and j are significantly different when
(a) $\left|T_{i j}^{\text {obs }}\right|>q^{*}(\alpha)$ OR (equivalently)
(b) p -value $=\left(\#\right.$ of $\left.Q_{R} \geq\left|T_{i j}^{\text {obs }}\right|\right) / R \leq \alpha$

Example 5.1.1 (Salt Example (cont.)). Assess any group difference with the same data.

- Solution:

- Method 1 (Bonferroni): In R, 3 WRS tests were performed with the following permutation p-values

	I vs. II	I vs. III	II vs. III
p-value	0.07506	0.00641	0.2254

Using Bonferroni correction, to be $\approx(1-\alpha) 100 \%$ confident in our joint inferences, we compare these to $\alpha / 3$. If $\alpha=0.05$ we compare them to $0.05 / 3=0.0167$. Thus, again group I vs. III are significantly different.

- Method 2 (Permutation HSD): Based on $R=4000$ permutations, the Tukey HSD permutation cutoff is $q^{*}(\alpha)=1.7505$. The value of the dispersion measure is $T_{i j}=\left|\bar{x}_{i}-\bar{x}_{j}\right|$. A table giving the comparisons is then:

Groups	I vs. II	I vs. III	II vs. III
$T_{i j}$	1.38	$\mathbf{2 . 3 3}$	0.95
$q^{*}(\alpha)$	1.7505	$\mathbf{1 . 7 5 0 5}$	1.7505

This gives the same inference as with method 1.
So all methods with differing criteria agree that groups I and III are significantly different.

5.1.2 Kruskall-Wallis vs Permutation

Since KW uses ranks it tends to have higher power when...

1. There are outliers
2. The distributions are highly skewed
3. The distribution has "heavy tails" (ex: t-distribution)

5.1.3 Trends and Associations

First, we will consider associations between two numerical variables.
Recall: The simplest type of association is a linear association when one variable has a linear trend with another.

One of the ways to measure the strength of a linear relationship is through correlation. For completeness, we give a definition here:

Definition 5.1.1 (Correlation). The correlation ρ between two random variates X and Y is

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[(X-E(X))(Y-E(Y))]}{\sigma_{X} \sigma_{Y}}
$$

Note that $\rho \in[0,1]$ only.

Parametric Test For Correlation

For review, we give the parametric version for a correlation test. Let ρ denote the population correlation between numeric random variables X and Y. Assume we measure n pairs of data, $\left(x_{i}, y_{i}\right)$. Then, to conduct a parametric correlation test, we follow these steps:

Parametric Correlation Test

Step 1: State the hypotheses

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \rho=0$	$H_{A}: \rho \neq 0$
$H_{0}: \rho \geq 0$	$H_{A}: \rho<0$
$H_{0}: \rho \leq 0$	$H_{A}: \rho>0$

Step 2: Calculate the test statistic

$$
t_{s}=r \sqrt{\frac{n-2}{1-r^{2}}} \quad(\mathrm{df}=n-1)
$$

where

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

Step 3: Calculate the p-value

\mathbf{H}_{A}	p-value
$H_{A}: \rho \neq 0$	$2 P\left(t>\left\|t_{s}\right\|\right)$
$H_{A}: \rho<0$	$P\left(t<t_{s}\right)$
$H_{A}: \rho>0$	$P\left(t>t_{s}\right)$

Step 4: Reject H_{0} if p-value $<\alpha$

In this test, we assume...

1. Pairs are independent (random selection of pairs)
2. $\left(x_{i}, y_{i}\right)$ are distributed bivariate normal

Alternatively, we could also create the linear regression line and create a test for the slope. In
this setup...

$$
\text { True Model: } \quad Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

Least Squares Line: $\quad \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$
where $\hat{\beta}_{1}=r\left(s_{x} / s_{y}\right)$ and $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$. The steps, then, to conduct a parametric regression test are:

Least-Squares Parametric Test

Step 1: State the hypotheses

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \beta_{1}=0$	$H_{A}: \beta_{1} \neq 0$
$H_{0}: \beta_{1} \geq 0$	$H_{A}: \beta_{1}<0$
$H_{0}: \beta_{1} \leq 0$	$H_{A}: \beta_{1}>0$

Step 2: Calculate the test statistic

$$
t_{s}=\hat{\beta}_{1} \sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{M S E}} \quad(\mathrm{df}=n-2)
$$

where

$$
M S E=\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}
$$

Step 3: Calculate the p-value

\mathbf{H}_{A}	p-value
$H_{A}: \beta_{1} \neq 0$	$2 P\left(t>\left\|t_{s}\right\|\right)$
$H_{A}: \beta_{1}<0$	$P\left(t<t_{s}\right)$
$H_{A}: \beta_{1}>0$	$P\left(t>t_{s}\right)$

Step 4: Reject H_{0} if p-value $<\alpha$

With linear regression we assume...

1. Pairs are randomly sampled and independent
2. $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma_{\epsilon}^{2}\right)$

Notice:

- If β_{1} or $\rho=0$, then no linear relationship between Y and X
- If β_{1} or $\rho<0$, then negative linear relationship
- If β_{1} or $\rho>0$, then positive linear relationship

5.2 Lecture 13: Non-Parametric Linear Tests

The most common reasons for using a non-parametric test are...

1. Many outliers present (violates normality)
2. Non-constant variance (violates normal distribution)
3. Small sample size (may not be able to conclude normality of data)

5.2.1 Permutation Test for Slope

If we assume that $H_{0}: \beta_{1}=0$ is true, it means that Y does not tend to change with X. In other words, any value of Y should be equally likely to be paired with any X since there is no association between the two variates. In order to perform a permutation test for the slope, we follow these steps...

Permutation Least-Squares Test

Step 1: State H_{0} and H_{A}

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \beta_{1}=0$	$H_{A}: \beta_{1} \neq 0$
$H_{0}: \beta_{1} \geq 0$	$H_{A}: \beta_{1}<0$
$H_{0}: \beta_{1} \leq 0$	$H_{A}: \beta_{1}>0$

Step 2: Calculate the observed test statistic:

$$
\hat{\beta}_{1}^{\mathrm{obs}}=\text { estimated least-squares slope }=r \frac{S_{y}}{s_{x}}
$$

Step 3: Calculate the permutation p-value:

- To permute the groups, there are n ways to pair The first y_{i} with an x_{i}. Then $n-1$ ways to pair The second y_{i} with an x_{i} \&etc... This gives $n!$ total permutations. To obtain a permutation distribution for $\hat{\beta}_{1}$ we:

1 Permute the data, and calculate $\hat{\beta}_{i}$
2 Repeat for either...

- All n ! permutations OR
- $\mathbf{R}>\mathbf{3 0 0 0}$ random permutations

3 The actual or estimated permutation p-values are:

\mathbf{H}_{A}	Actual	Estimated
$\beta_{1}>0$	(\# of $\hat{\beta}_{1} \geq \hat{\beta}_{1}^{\text {obs }} / n!$	(\# of $\hat{\beta}_{1} \geq \hat{\beta}_{1}^{\text {obs }} / R$
$\beta_{1}<0$	(\# of $\hat{\beta}_{1} \leq \hat{1}_{1}^{\text {obs }} / n!$	(\# of $\hat{\beta}_{1} \leq \hat{\beta}_{1}^{\text {obs }} / R$
$\beta_{1} \neq 0$	(\# of $\left.\left\|\hat{\beta}_{1}\right\| \geq \mid \hat{\beta}_{1}^{\text {obs }}\right) \mid / n!$	(\# of $\left.\left\|\hat{\beta}_{1}\right\| \geq\left\|\hat{\beta}_{1}^{\text {obs }}\right\|\right) / R$

4 If p-value $<\alpha$, reject H_{0}

Example 5.2.1 (Physical Demand vs. Salary). Ratings for salary and physical demand were recorded on a scale from 1 to 10. The ranked results were...

Salary $(Y):$	2	6	3	5	7	10	9	8	4	1
Demand $(X):$	5	2	3	8	10	9	1	7	6	4

With summary statistics

	Salary	Demand
Mean	5.5	5.5
Std. Dev.	3.03	3.03

and $r=0.261$ as well as $n=10$.
Note: The data has been ranked and there are no ties, so $\bar{y}=\bar{x}$ and $s_{y}=s_{x}$.
(a) Find the estimated slope

- Solution:

$$
\hat{\beta}_{1}^{o b s}=r \frac{s_{y}}{s_{x}}=0.261\left(\frac{3.03}{3.03}\right)=0.261
$$

(b) Based on $R=4000$ random permutations, we find the following permutation distribution:

K	-1	-0.75	-0.50	-0.25	0	0.25	0.50	0.75	1
$P\left(\hat{\beta}_{1}^{i}\right) \geq K$	1	0.9920	0.9295	0.7550	0.5055	0.2475	0.0825	0.0075	0

Assuming $H_{A}: \beta_{1}>0$, estimate the p-value.

- Solution: Our p-value is $P\left(\hat{\beta}_{1}^{i} \geq 0.261\right)$ and by the table above we have

$$
\begin{aligned}
P\left(\hat{\beta}_{1}^{i} \geq 0.25\right)= & 0.2475 \quad \text { and } \quad P\left(\hat{\beta}_{1}^{i} \geq 0.50\right)=0.0825 \\
& \Longrightarrow p \text {-value } \in[0.0825,0.2475]
\end{aligned}
$$

Note: From R, $\left(\#\right.$ of $\left.\hat{\beta}_{1}^{i} \geq 0.261\right) / 4000=0.2355$
(c) State your conclusion in terms of the problem

- Solution: Since p-value $>\alpha$ for any $\alpha>0.10$, we fail to reject H_{0}. We can not conclude that there is a significant positive linear relationship for the scores of salary and scores of physical demand.

Note: There were $10!=362,880$ possible permutations. We sampled (if each permutation was unique) $4000 / 10$! $\approx 1.1 \%$ of them. Do you think this is enough? Why?

5.2.2 Large Sample Approximation to Permutation

If an assumption of regression is violated and if $n \geq 30$, we can use a large sample approximation to the permutation slope test. But, before moving on, we state one proposition that is important for the test.

Proposition 5.2.1 (Slope with Null Sample Correlation). For any sample where $r=0$, assuming a (simple) least squares model is the best fit, we have $\beta_{1}=0$ too.

Proof. With the use of a least-squares model and knowledge that $r=0$, we have $\hat{\beta}_{1}=$ $r\left(s_{y} / s_{x}\right)=0\left(s_{y} / s_{x}\right)=0$ and $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=\bar{y}$. This makes the sample line as

$$
y_{i}=\bar{y}
$$

Now, under least squares, $E\left(Y_{i}\right)=y_{i}$. This makes it so

$$
\beta_{0}+\beta_{1} x_{i}=\bar{y} \quad \forall x_{i} \in \text { Domain }
$$

It then follows that $\beta_{1}=0$ as β_{0}, β_{1} are fixed constants but x_{i} 's are not. Thus, $r=0 \Rightarrow \beta_{1}=0$ as we sought to show.

Notice that for any single sample where $r=0$, any instance of this quantity for r always gives $\beta_{1}=0$. Any variation is solely attributed by the ϵ_{i} 's then.

We now state a method for conducting a large sample approximation for the permutation test for association:

Permutation Large Sample Approximation Test for Association

Step 1: State H_{0} and H_{A}

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \rho_{1}=0$	$H_{A}: \rho_{1} \neq 0$
$H_{0}: \rho_{1} \geq 0$	$H_{A}: \rho_{1}<0$
$H_{0}: \rho_{1} \leq 0$	$H_{A}: \rho_{1}>0$

Step 2: Calculate the test-statistic

$$
z_{s}=\frac{(r-0)}{1 / \sqrt{n-1}}=r \sqrt{n-1}
$$

since under the null hypothesis (no association) $r \stackrel{\text { appx }}{\sim} N(0,1 / \sqrt{n-1})^{1}$
Step 3: Calculate the p-value

[^3]\[

$$
\begin{array}{lc}
H_{A}: \rho \neq 0 & 2 P\left(Z>\left|z_{S}\right|\right) \\
H_{A}: \rho<0 & P\left(Z<z_{S}\right) \\
H_{A}: \rho>0 & P\left(Z>z_{S}\right)
\end{array}
$$
\]

Example 5.2.2 (Salary \& Physical Demand (cont.)). Continuing previous example, recall $n=10$ and $r=0.261$. Let's test for association using a large sample approximation to the permutation test. The test-statistic is

$$
z_{s}=0.261 \sqrt{10-1} \approx 0.8253 \quad \text { and } \quad H_{A}: \rho>0
$$

So the p-value is $P(Z>0.8253) \approx 0.2033$. Thus, again we fail to reject H_{0}.
Notice that the p-values were quite different (0.2355 vs 0.2033). Thus, the technique we use has a lot of influence on the outcome. How would you explain this?

What likely occurred in this sample is our sample size is too small, so the p-value is not accurate in the normal approximation.

5.3 Lecture 14: Ranked Correlation Tests

Just like in the other non-parametric tests, there is a ranked version for correlation tests.
Notice that if we rank X and Y the general trend of linear relationships still hold. For example, if Y tends to increase with X the rank of Y should also tend to increase with the rank of X. This means that there is a rank correlation between X and Y.

5.3.1 Spearmans Rank Correlation

To calculate Spearman's Rank Correlation we use the traditional formula for correlation and replace (x_{i}, y_{i}) with the corresponding adjusted ranks.

Notation: Let...

- $R\left(x_{i}\right)=$ rank for $x_{i}, \quad \forall i \in\{1, \ldots, n\}$
- $R\left(y_{i}\right)=$ rank for $y_{i} \quad \forall i \in\{1, \ldots, n\}$
- $\bar{R}(x)=$ average rank of x_{i} and $\bar{R}(y)=$ average rank of y_{i}
- $s_{R(x)}=$ standard deviation of rank of X
- $s_{R(y)}=$ standard deviation of rank of Y

Then, we have

$$
\begin{aligned}
r_{s} & =\text { Spearman's Rank Correlation } \\
& =\frac{1}{n-1} \sum_{i}\left(\frac{R\left(x_{i}\right)-\bar{R}(x)}{s_{R(x)}}\right)\left(\frac{R\left(y_{i}\right)-\bar{R}(y)}{s_{R(y)}}\right)
\end{aligned}
$$

Then, the steps to perform a ranked correlation test are:

Spearman's Ranked Correlation Test

Step 1: State H_{0} and H_{A}

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \rho_{s}=0$	$H_{A}: \rho_{s} \neq 0$
$H_{0}: \rho_{s} \leq 0$	$H_{A}: \rho_{s}>0$
$H_{0}: \rho_{s} \geq 0$	$H_{A}: \rho_{s}<0$

where $\rho_{s}=$ population Spearman's correlation.
Step 2: Calculate the test-statistic, r_{s} as defined above
Step 3: Calculate the p-value. Note that for $n=1, \ldots, 10$, there are critical values of the Spearman's correlation in table Al2. They give $P\left(r_{s}^{*} \geq c\right)$ for various c values. Use it to compute p -values for the following cases:

\mathbf{H}_{A}	p-value
$\rho_{s} \neq 0$	$2 P\left(r_{s}^{*} \geq\left\|r_{s}\right\|\right)$
$\rho_{s}>0$	$P\left(r_{s}^{*} \geq r_{s}\right)$
$\rho_{s}<0$	$P\left(r_{s}^{*} \leq r_{s}\right)$

Note: For the tables, you may have to use the fact that $P\left(r_{s}^{*}<-c\right)=P\left(r_{s}^{*}>c\right)$ if $H_{0}: \rho_{s}<0$.

Note: There is also a large sample approximation for Spearman's which is exactly the same as that for the large sample approximation to permutation except we replace r by r_{s}. Same process, different p-values though.

Example 5.3.1 (Theoretical Spearman's). Suppose $r_{s}=-0.74, n=8$, and $H_{A} \rho_{s} \neq 0$. Then, the table A12 gives $P\left(r_{s}^{*} \geq 0.74\right) \approx 0.023$, so that the p-value is $2 P\left(r_{s}^{*} \geq|-0.74|\right) \approx$ $0.046<0.05$. If $\alpha=0.05$, we reject H_{0} and conclude there is a linear relationship between the ranks of X and Y.

5.3.2 Kendall's Tau

An alternative that doesn't use ranks directly, but also does not use the original data is Kendall's tau (τ). Note that this test uses the same ideas as the Mann-Whitney Test.

Suppose we look at a pair of paired observations $\left\{\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right\} \quad \forall i<j$ say $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}). Then...

1. If as X increases Y tends to also increase, then we should see $x_{1}>x_{2} \Rightarrow y_{1}>y_{2}$
2. If as X increases Y tends to decrease, then we should see $x_{1}>x_{2} \Rightarrow y_{1}<y_{2}$

We use this to describe "discordant" and "concordant" pairs:

Definition 5.3.1 (Concordant Pairs). A pair of data points $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$ is said to be concordant (in agreement) if

$$
\begin{aligned}
& x_{i}<x_{j} \Rightarrow y_{i}<y_{j} \quad \text { or } \quad x_{i}>x_{j} \Rightarrow y_{i}>y_{j} \\
& \quad \Longleftrightarrow(\Delta x)(\Delta y)=\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0
\end{aligned}
$$

Definition 5.3.2 (Discordant Pairs). A pair of data points $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$ is said to be dis-
cordant (in disagreement) if

$$
\begin{aligned}
& x_{i}<x_{j} \Rightarrow y_{i}>y_{j} \quad \text { or } \quad x_{i}>x_{j} \Rightarrow y_{i}<y_{j} \\
& \quad \Longleftrightarrow(\Delta x)(\Delta y)=\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0
\end{aligned}
$$

Additionally, if any pairs do not fit the definitions above, then they are "tied." This means either $x_{i}=x_{j}$ or $y_{i}=y_{j}$ which implies that $\Delta x \Delta y=\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)=0$.

This then implies...

- If most pairs are concordant \Longrightarrow positive linear relationship
- If most pairs are discordant \Longrightarrow negative linear relationship

We can use this to create a definition for "Kendall's Tau" as a measure similar to correlation:

Definition 5.3.3 (Kendall's Tau). The "population" value of Kendall's Tau is

$$
\begin{aligned}
\tau & =(\text { chance of concordant pairs })-(\text { chance of discordant pairs }) \\
& =P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)>0\right)-P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)<0\right) \\
& =P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)>0\right)-\left(1-P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)>0\right)\right) \\
& =2 P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)>0\right)-1
\end{aligned}
$$

Note that since the population is assumed to be continuous, $P\left(\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)=0\right)=0$. This could also be thought of as a rescaled probability of concordant pairs.

Notice if all pairs are concordant, then $\tau=1$. If all are discordant, then $\tau=-1$. If exactly half are concordant and half are discordant, then $\tau=0$. Thus, Kendall's Tau is mimicking the properties of traditional correlation ρ.
Now, if we have to estimate τ, there are $\binom{n}{2}$ total pairs $\left(x_{i}, x_{j}\right),\left(y_{i}, y_{j}\right)$. Then, let

$$
U_{i j}=\left\{\begin{array}{lll}
1 & \text { if }\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0 & \text { (concordant) } \\
\sqrt{-1} & \text { if }\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)=0 & \text { (tied) } \\
0 & \text { if }\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0 & \text { (discordant) }
\end{array}\right.
$$

Then, we define

$$
\begin{aligned}
V_{i} & =\sum_{j=i+1}^{n} \operatorname{Re}\left(U_{i j}\right)=\# \text { of concordant pairs for ith value }\left(x_{i}, y_{i}\right) \\
& =\sum_{i<j} \mathbf{1}\left(U_{i j}=1\right)
\end{aligned}
$$

Notice that we start at $j=i+1$ so that there we are never comparing the same pair. For the same reason, $i \in\{1, \ldots, n-1\}$. The sample version of Kendall's Tau r_{τ} is then given by a very similar form as with the population; probabilities turn into sample proporitions:

Definition 5.3.4 (Sample Kendall's Tau). The sampled estimate of Kendall's Tau is given by

$$
\begin{aligned}
r_{\tau} & =\text { (prop. concordant pairs, no ties) }- \text { (prop. discordant pairs, no ties) } \\
& =\frac{\sum_{i<j} \mathbf{1}\left(U_{i j}=1\right)-\sum_{i<j} \mathbf{1}\left(U_{i j}=0\right)}{\binom{n}{2}-\sum_{i<j} \mathbf{1}\left(U_{i j}=\sqrt{-1}\right)} \\
& =\frac{2\left[\sum_{i<j} \mathbf{1}\left(U_{i j}=1\right)\right]-\left[\binom{n}{2}-\sum_{i<j} \mathbf{1}\left(U_{i j}=\sqrt{-1}\right)\right]}{\binom{n}{2}-\sum_{i<j} \mathbf{1}\left(U_{i j}=\sqrt{-1}\right)} \\
& =\frac{2\left[\sum_{i=1}^{n-1} V_{i}\right]}{\binom{n}{2}-\sum_{i<j} \mathbf{1}\left(U_{i j}=\sqrt{-1}\right)}-1 \\
& \approx \frac{2\left[\sum_{i=1}^{n-1} V_{i}\right]}{\binom{n}{2}}-1
\end{aligned}
$$

Note: The definition given above is useful for computation, a precise definition (given by [6]) of r_{T} is

$$
\begin{aligned}
r_{\tau} & =(\text { number of concordant pairs })-(\text { number of discordant pairs }) \\
& =\frac{1}{\binom{n}{2}} \sum_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \operatorname{sgn}\left(y_{i}-y_{j}\right)
\end{aligned}
$$

where

$$
\operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

but it is not practical.

5.4 Appendix (Week 5)

5.4.1 Sample Correlation Coefficient's Distribution

We now derive an approximation of the sampling distribution of r under H_{0} or $\beta_{1}=0$. Note that in simple linear regression, it can be shown

$$
\frac{\hat{\beta}_{1} \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}{s}=r \sqrt{\frac{n-2}{1-r^{2}}} \sim t_{[n-2]}
$$

If we set $X=r \sqrt{\frac{n-2}{1-r^{2}}}$, then we can see that a distribution function for X can be obtained using a transformation of variables, i.e. we use the equation $f(x) d x=f(r) d r$ to find $f(r)$, the density function. If we do this, we find that (see [8])

$$
f(r)=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1-r^{2}\right)^{\frac{\nu-2}{2}}
$$

where $\nu=n-2$. This is the true sampling distribution for the sample correlation coefficient; note $r \in[0,2]$. Because r^{2} is symmetric about 0 , so is $f(r)$ and likewise, $E(r)=0$. We now derive the variance of r :

Proposition 5.4.1 (Variance of r). The variance of the sampling distribution of the correlation coefficent is

$$
V(r)=\frac{1}{n-1}
$$

Proof. For brevity, we set

$$
A=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}
$$

Using the definition of variance, we see:

$$
\begin{aligned}
V(r) & =A \int_{0}^{1}(r-0)^{2}\left(1-r^{2}\right)^{\frac{(\nu-2)}{2}} d r \\
& =A \int_{0}^{1} \frac{u(1-u)^{\frac{\nu-2}{2}}}{2 \sqrt{u}} d u \quad\left(u=r^{2} \Rightarrow d u=2 r d r\right) \\
& =A \int_{0}^{1} u^{1 / 2}(1-u)^{\frac{\nu-2}{2}} d u \\
& =A \int_{0}^{1} u^{(3 / 2)-1}(1-u)^{(\nu / 2)-1} d u
\end{aligned}
$$

Notice the last equation is the area under the beta function where $\alpha=3 / 2$ and $\beta=\nu / 2$. We
can then compute the integral as

$$
\begin{array}{ll}
=A \frac{\Gamma(3 / 2) \Gamma(\nu / 2)}{\Gamma\left(\frac{\nu+3}{2}\right)} & \\
=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\nu / 2)} \times \frac{\Gamma(3 / 2) \Gamma(\nu / 2)}{\Gamma\left(\frac{\nu+3}{2}\right)} & \\
=\frac{1}{\sqrt{\pi}} \frac{\Gamma(3 / 2)}{\frac{\nu+1}{2}} & \left(\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}\right) \\
=\frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} \frac{2}{\nu+1} & (\nu=n-2) \\
=\frac{1}{n-1} & (\nu)
\end{array}
$$

Hence, $V(r)=\frac{1}{n-1}$, as we sought to show.

Now that we know the mean and variance of r, we can, upon inspection of it's curve, see that a normal distribution with the same mean and variance approximates r 's distribution (it's a little below the curve, though). Hence,

$$
r \stackrel{a p p x}{\sim} N(0,1 / \sqrt{n-1})
$$

as we sought to show. Notice, we assumed normality of errors in the simple linear regression to yield normality of the observed slope $\hat{\beta}_{1}$. In a non-parametric setting, with a large enough sample size, any linear combination of the ϵ_{i} 's will be approximately normally distributed, so this can still hold in that setting (as long as $\sigma_{\epsilon_{i}}$'s are all the same).

Chapter 6

Week 6: Correlation Tests (cont.)

\& Tests for Independence

6.1 Lecture 15: Hypothesis Tests for Kendall's Tau

There are 3 types of hypothesis tests using Kendall's τ : Exact Hypothesis Tests, Permutation Tests, and Asymptotic Approximation Tests. We now give them in the order they are presented.

6.1.1 Exact Hypothesis Test for Tau)

The steps for conducting an exact hypothesis test for τ are as follows:

Exact Test for Kendall's τ

Step 1: State H_{0} and H_{A}

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \tau=0$	$H_{A}: \tau \neq 0$
$H_{0}: \tau \leq 0$	$H_{A}: \tau>0$
$H_{0}: \tau \geq 0$	$H_{A}: \tau<0$

Step 2: Calculate test-statistic

$$
r_{\tau}=\frac{2 \sum_{i=1}^{n-1} V_{i}}{\binom{n}{2}}-1
$$

Step 3: Calculate the p-value Similarly to Spearman's, Kendall has an exact distribution table for r_{τ}^{*} for $n \in\{1, \ldots, 10\}$ (notice the low sample size). It gives $P\left(r_{\tau}^{*}>c\right)$ and again $P\left(r_{\tau}^{*}<-c\right)=P\left(r_{\tau}^{*}>c\right)$. The p-values for each H_{A} are then

\mathbf{H}_{A}	p-value
$\tau>0$	$P\left(r_{\tau}^{*}>r_{\tau}\right)$
$\tau<0$	$P\left(r_{\tau}^{*}<r_{\tau}\right)$
$\tau \neq 0$	$2 P\left(r_{\tau}^{*}>\left\|r_{\tau}\right\|\right)$

Step 4: Reject H_{0} if p-value $<\alpha$

6.1.2 Permutation Test for Tau

We follow the same procedure as in the exact test, except the only difference is in the p-value step:

Step 3 (Permutation Test): For $\mathbf{R}>2000$ random permutations, calculate $r_{\tau_{i}}$ For each permutations

\mathbf{H}_{A}	p-value
$\tau>0$	$\left(\# r_{\tau_{i}} \geq r_{\tau_{\text {obs }}}\right) / R$
$\tau<0$	$\left(\# r_{\tau_{i}} \leq r_{\text {osb }}\right) / R$
$\tau \neq 0$	$\left(\#\left\|r_{\tau_{i}}\right\| \geq\left\|r_{\tau_{\text {obs }}}\right\|\right) / R$

where $r_{\tau_{\text {obs }}}=$ observed Kendall's Tau from original sample

6.1.3 Asymptotic Approximation for Tau

The following formula can be used with or without ties in the data (for either X or Y). First, we note the frequency of ties with the following notation:

- Let $s_{i}=\#$ of ties for the i th tied value of X
- Let $t_{i}=\#$ of ties for the i th tied value of Y

For example, if

$X:$	0	$\mathbf{1}$	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	4	5	$\mathbf{6}$	$\mathbf{6}$
$Y:$	$\mathbf{1}$	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	5	6	7

then,

- $s_{1}=2$ (two values of 1$)$
- $t_{1}=2$ (two 1's)
- $s_{2}=3$ (three values of 3)
- $t_{2}=2$ (two 3 's)
- $s_{3}=2$ (two values of 6)
- $t_{3}=3$ (three 4's)

Now, if we let

$$
\begin{aligned}
A & =\frac{\sum_{i} s_{i}\left(s_{i}-1\right)\left(2 s_{i}+5\right)+\sum_{j} t_{j}\left(t_{j}-1\right)\left(2 t_{j}+5\right)}{18} \\
B & =\frac{\left[\sum_{i} s_{i}\left(s_{i}-1\right)\left(2 s_{i}-2\right)\right]\left[\sum_{j} t_{j}\left(t_{j}-1\right)\left(t_{j}-2\right)\right]}{9 n(n-1)(n-2)}
\end{aligned}
$$

and

$$
C=\frac{\left[\sum_{i} s_{i}\left(s_{i}-1\right)\right]\left[\sum_{j} t_{j}\left(t_{j}-1\right)\right]}{2 n(n-1)}
$$

We now give some properties of these quantities:

Proposition 6.1.1 (A, B, C when no ties). When there are no ties in the data, $A=B=C=0$.
Proof. Notice if there are no ties, s_{i} and t_{i} have values of 0 for every index. This makes each sum in the formulas for $A, B, C 0$. Hence, all three values are thus 0 if there are no ties.

Proposition 6.1.2 (2 Repeated Values for Y). If Y has $t_{i} \leq 2$, then $B=0$.
Proof. If $t_{i} \leq 2$ for all i, then $t_{i}-1=0$ or $t_{i}-2=0$ depending on the value of t_{i}. In either case, the sum $\sum_{j} t_{j}\left(t_{j}-1\right)\left(t_{j}-2\right)$ evaluates to 0 which in turn leads to $B=0$, as we sought to show.

Proposition 6.1.3 (Mutually Exclusive Ties). If ties exist for only one of the sets X or Y, then $B=C=0$.

Proof. If there are only ties for one of X and Y, then only one of s_{i} or t_{i} has 0 for every value. This makes any sum with these quantities evaluate to 0 . Since B and C have products using these quantities, they are guaranteed to be 0 in either case.

Now, we can prove that the variance of r_{τ} is

$$
V\left(r_{\tau}\right)=\frac{4 n+10}{9\left(n^{2}-n\right)}-\frac{4}{n^{2}(n-1)}(A-B-C)
$$

and that the mean of r_{τ} is $E\left(r_{\tau}\right)=0$. We can now state the steps for this hypothesis testing method:

Asymptotic Approximation for τ Test

Step 1: State the hypotheses

\mathbf{H}_{0}	\mathbf{H}_{A}
$H_{0}: \tau=0$	$H_{A}: \tau \neq 0$
$H_{0}: \tau \leq 0$	$H_{A}: \tau>0$
$H_{0}: \tau \geq 0$	$H_{A}: \tau<0$

Step 2: Compute the test statistic

$$
z_{s}=\frac{r_{\tau}}{\sqrt{V\left(r_{\tau}\right)}}
$$

Step 3: Compute the p-value

\mathbf{H}_{A}	p-value
$\tau>0$	$P\left(Z>z_{s}\right)$
$\tau<0$	$P\left(Z<z_{s}\right)$
$\tau \neq 0$	$2 P\left(Z>\left\|z_{s}\right\|\right)$

Note: This is primarily used when $n \geq 30$.

Note: We now have three correlations:

- Parametric-Pearson's: r
- Ranks-Spearman's: r_{s}
- Kendall's $\tau: r_{\tau}$

Let's assess the validity of non-parametric tests for correlation by an example.

Example 6.1.1 (Age \& Body Fat). Age and body fat percentage were measured for 9 subjects:

Age $(X):$	23	23	27	27	38	41	45	49	50
$B F(Y):$	9.5	27.9	7.8	17.18	31.4	25.9	27.4	25.2	31.1

With corresponding correlations:

$$
r=0.658 \quad r_{s}=0.395 \quad r_{\tau}=0.286
$$

Assume the claim is that body fat percentage increases with age (positive correlation).
(a) Calculate the asymptotic z-scores for all correlations and the appropriate p-values.

- Solution: For each type of test, we have

$$
\begin{aligned}
& \text { Pearson: } z_{s}=r \sqrt{(n-2) /\left(1-r^{2}\right)}=0.658 \sqrt{7 /\left(1-0.658^{2}\right)}=2.311 \\
& \text { Spearman: } z_{s}=r_{s} \sqrt{n-1}=0.395 \sqrt{9-1}=1.117 \\
& \text { Kendall: } s_{1}=s_{2}=2 \text { no ties in } Y \Longrightarrow B=C=0 \\
& \text { so } A=\sum_{i} s_{i}\left(s_{i}-1\right)\left(2 s_{i}+5\right) / 18=[2(1)(4+5)+2(1)(2+5)] / 18 \\
& \quad=2
\end{aligned}
$$

$$
\text { and } \begin{aligned}
V\left(r_{\tau}\right) & =\frac{4 n+10}{9\left(n^{2}-n\right)}-\frac{4}{n^{2}(n-1)}(A-B-C) \\
& =(4(9)+10) /\left(9\left(9^{2}-9\right)\right)-\left[4 /\left(9^{2}(9-1)\right)\right](2) \approx 0.0586 \\
\Longrightarrow z_{s} & =0.286 / \sqrt{0.0586} \approx 1.1815
\end{aligned}
$$

The p-values are thus:

statistic	p-value
r	$P(Z>2.311) \approx 0.0104$
r_{s}	$P(Z>1.117) \approx 0.1320$
r_{τ}	$P(Z>1.1815) \approx 0.1189$

(b) Compare the results. Which p-value do you believe is more appropriate?

- Solution: Since the sample size is small, asymptotic distributions may not be accurate. But, if we have to use one, it is best not to use Pearson's. We can see why if we look at the plotted data:

Since it does not look bivariate normal (football/ellipse shaped), Pearson's parametric test is not applicable. Out of the above, use either Spearman's Rank test or Kendall's Tau.

6.2 Lecture 16: More on Correlation \& Contingency Tables

6.2.1 When to use which Correlation

Some notes on which correlation test to use...

Correlation Notes

1. When there are no outliers and the distribution is approximately symmetric (but with low sample size), use a permutation test for the slope
2. When outliers are present in the data, use Spearman's or Kendall's since they remove effect of extreme values
3. Kendall and Spearman tend to have similar results, but Spearman tends to have higher power at low sample sizes and Kendall has higher power in large sample sizes. ${ }^{1}$

6.2.2 Contingency Tables

A contingency table is used for two or more categorical variables and typically has the following form:

This data typically comes from two methods of collection:
(I) All n subjects are sampled randomly and independently so that neither row nor column totals are known beforehand
(II) Row totals or column totals are known prior to the study and what is random is the outcome of only one of the categorical variables

[^4](I) is typically the result of an observational study. For example, 100 people are sampled and their major and gender are recorded.
(II) is used for experiments. For example, 50 subjects are randomly allocated into Drug group vs Placebo group so that there are 25 in each group. Then, the type of improvement is measured.

The goal with two categorical r.v's is to see if the outcome of one effects the outcome of another, i.e, if they are dependent or independent. Note, however, we cannot determine causality from any categorical analysis alone.

6.2.3 Notation

Let the population or true value of the probability of being in category i of X, j of Y is $p_{i j}$. Equivalently, $P(X=i, Y=j)=p_{i j}$. It then follows...

- $p_{i .}=P(X=i)=$ probability of being category i of X
- $p_{. j}=P(Y=j)=$ probability of being category j of Y
- $p_{i \mid j}=P(X=i \mid Y=j)=$ probability of being in category i of X, given in j of $Y=$ $p_{i j} / p_{. j}$
- $p_{j \mid i}=P(Y=j \mid X=i)=$ probability of being in category j of Y, given in i of $X=$ $p_{i j} / p_{i}$.

If two events A and B are independent, then

$$
P(A, B)=P(A) P(B) \Longleftrightarrow P(A \mid B)=P(A)
$$

For categorical r.v's X and Y are independent, we have

$$
p_{i j}=p_{i . p_{. j}} \Longleftrightarrow p_{i \mid j}=p_{i .} \Longleftrightarrow p_{j \mid i}=p_{. j}
$$

6.2.4 Parametric χ^{2} Test for Independence

Using the above notations, we can review the parametric test for independence.

Parametric χ^{2} Test for Independence

Step 1: State H_{0} and H_{A}
$H_{0}:$ Variables X, Y are independent
$H_{A}:$ Variables X, Y are dependent

Step 2: Calculate test-statistic

- Here we compare the counts $n_{i j}$ to what they should have been if the variables were actually independent (H_{0} true). If they were independent we would see
$p_{i j}=p_{i .} p_{. j} \Longleftrightarrow E\left(n_{i j}\right)=e_{i j}=n p_{i .} p_{. j}$ where the left entry in the biconditional is the expected count based on average based on n subjects. In practice, we'll never know $e_{i j}$, but we can observe $\hat{e}_{i j}=n \hat{p}_{i .} \hat{p}_{. j}$ and simplification of this form gives

$$
\begin{aligned}
\hat{e}_{i j} & =n \hat{p}_{i .} \hat{p}_{. j}=n\left(\frac{n_{i .}}{n}\right)\left(\frac{n_{. j}}{n}\right) \\
& =\frac{n_{i .} n_{j}}{n}=\frac{(\text { row total } i)(\text { row total } j)}{n}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \hat{e}_{i j}=\frac{n_{i .}}{n} n_{. j}=\hat{p}_{i . n_{. j}} \\
& \Longleftrightarrow \hat{p}_{i .}=\frac{\hat{e}_{i j}}{n_{. j}}(\forall j)
\end{aligned}
$$

i.e. the prob of being in category i should be the same no matter what column j is. Finally, our test statistic is

$$
\chi_{[s]}^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{e}_{i j}\right)^{2}}{\hat{e}_{i j}} \quad d f=(r-1)(c-1)
$$

Which is distributed $\chi_{[(r-1)(c-1)]}^{2}$ if H_{0} is true
Step 3: Calculate the p-value

$$
\text { p-value }=P\left(\chi^{2} \geq \chi_{[s]}^{2}\right)
$$

We note some assumptions to carry out this test:

χ^{2} Test for Independence Assumptions

1. Random sample was taken, i.e. X_{i} 's are mutually independent and Y_{i} 's are mutually independent
2. $\hat{e}_{i j} \geq 5$ for all i, j

Caveat: If $n_{i j}$'s have vastly different magnitudes (high variance), we may not have a χ^{2} distribution for $\chi_{[s]}^{2}$, even if $\hat{e}_{i j} \geq 5$

6.3 Lecture 17: Permutation Test for Independence

Now, we give some non-parametric tests concerning independence.

6.3.1 Permutation Test for Independence

Permutation Test for Independence

Step 1: State H_{0} and H_{A}

$$
\begin{array}{r}
H_{0}: \text { Variables } X, Y \text { are independent } \\
H_{A}: \text { Variables } X, Y \text { are dependent }
\end{array}
$$

Step 2: Calculate the test statistic. Note, our test statistic is the same as it was for the parametric test:

$$
\chi_{[s, \mathrm{obs}]}^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{e}_{i j}\right)^{2}}{\hat{e}_{i j}} \quad d f=(r-1)(c-1)
$$

Step 3: Calculate the permutation p-value. The steps for the permutation p-value are as follows:
(i) Fix either the row or column totals observed (this is an arbitrary constraint). Then randomly assign each subject in the row into a column. (Think of only one variate at a time $Y_{1}, \ldots, Y_{n \text {.. (}}$ (for example), we then assign the associated values of the other variate X_{1}, \ldots, X_{n}.. randomly assuming a uniform distribution without replacement).

Note: We may do this because if H_{0} is true, then $p_{j \mid i}=p_{i .}$. I.e. if you are in row i the prob of being in column j should be the same no matter what column you are in. Thus we take the n_{i}. values and shuffle them into all columns.
(ii) Calculate $\chi_{s, i}^{2}$ for your permutation data
(iii) Repeat ($i, i i$) $\mathbf{R}>\mathbf{2 0 0 0}$ times

The permutation based p-value is then

$$
\left(\# \text { of } \chi_{s, i}^{2} \geq \chi_{s, o b s}^{2}\right) / R
$$

Step 4: Reject H_{0} if p-value $<\alpha$

Note:

- Whether you fix the rows or the columns does not matter, they will result in the same p-value, i.e. we yield the same permutation tables.
- The total number of ways to shuffle the columns and fix the rows is $n!/\left[n_{1}!n_{2}!\ldots n_{r}!\right]$. Similarly, the total of ways to shuffle the rows and fix the columns is $n!/\left[n_{.1}!n_{2}!\ldots n_{. c}!\right]$. Both are equal in value.

Example 6.3.1 (Pain Relief). Seven patients were put into two groups. Group I took over the counter pain medications according to a doctor's recommendation. Group II self medicated with OTC medicine. The subject's pain relief was rated with values $S=$ slightly reduced, R $=$ reduced, and $E=$ eliminated. The results are as follows:

	S	R	E	
l	2	2	0	$n_{1 .}=4$
I	0	1	2	$n_{2 .}=3$
	$n_{.1}=2$	$n_{.2}=3$	$n_{.3}=2$	$n=7$

(a) How many permutations are there if we fix the row totals?

- Solution: $7!/[3!4!]=35$
(b) Find the observed test statistic, $\chi_{s, o b s}^{2}$
- Solution: The table of the observed expected values $\hat{e}_{i j}$ follows:

$$
\begin{aligned}
& \begin{array}{c|ccc|c}
\hat{c}_{i j} & S & R & E & \\
\hline I & \frac{(4)(2)}{7}=8 / 7 & \frac{(4)(3)}{7}=12 / 7 & \frac{(4)(2)}{7}=8 / 7 & 4 \\
I I & \frac{(3)(2)}{7}=6 / 7 & \frac{(3)(3)}{7}=9 / 7 & \frac{(3)(2)}{7}=6 / 7 & 3 \\
\hline & 2 & 3 & 2 & 7
\end{array} \\
& \Longrightarrow \chi_{s, \text { obs }}^{2}=(2-8 / 7)^{2} /(8 / 7)+(2-12 / 7)^{2} /(12 / 7)+\cdots+(2-6 / 7)^{2} /(6 / 7) \\
& =4.278
\end{aligned}
$$

(c) If the distribution of $\chi_{s, i}^{2}$ for all possible permutations is:

$\chi_{s, i}^{2}$	0.194	2.236	4.278	4.956	7.0	total
Freq	12	12	6	4	1	35

Find the exact permutation p-value.

- Solution: Since $\left(\#\right.$ of $\left.\chi_{s, i}^{2} \geq 4.278\right)=11$, the p-value is $11 / 35=0.31$.
(d) Interpret your p-value in terms of the problem
- Solution: If in reality pain relief and group were independent, we would observe our data or more extreme 31% of the time.
(e) State your conclusion in terms of the problem
- Solution: Since p-value $>\alpha$, we fail to reject H_{0} and conclude there is evidence to support that group and pain relief are independent.

6.3.2 Comparing Conditional Probabilities

Now, if we reject H_{0}, we next want to identify the direction of the dependence. For example, how does the value of X exactly depend on the value of Y ? Which values of X depend on certain values of Y ? These are similar questions we ask when we conducted ANOVA permutation tests.

To do this comparison, we compare $p_{j \mid i}-p_{j \mid i^{\prime}}$ (or $\left.p_{i \mid j}-p_{i \mid j^{\prime}}\right)$. These are known as the conditional probabilities of i for different groups j and j^{\prime} (or j for i and i^{\prime}).
The primary method used is similar to Tukey's HSD but modified for proportions.
Notation Let $Z_{j \mid i}$ be the test statistic comparing j (some column) conditional on i (some row). Then, we have

$$
Z_{j \mid i} \equiv \frac{\hat{p}_{j \mid i}-\hat{p}_{j \mid i^{\prime}}}{\sqrt{\bar{p}(1-\bar{p})\left(1 / n_{i .}+1 / n_{i^{\prime} .}\right)}}
$$

where $\hat{p}_{j \mid i}=n_{i j} / n_{i,}, \hat{p}_{j \mid i^{\prime}}=n_{i^{\prime} j} / n_{i^{\prime}, \text { and }} \bar{p}=\left(n_{i j}+n_{i^{\prime} j}\right) /\left(n_{i .}+n_{i^{\prime} .}\right)$. Effectively, $Z_{j \mid i}$ measures the standardized difference between two cell counts for a given column.

Now we find the permutation values we will use for our cutoffs.
Step 1: Calculate all " g " of the observed $Z_{j \mid i}$'s (these are the observed values we'll need later)

Step 2: Find a random permutation and calculate all " g " values of the $Z_{j \mid} \mid$'s based on this permutation permutation. Then, let $Q_{k}=\max _{i, j}\left|Z_{j \mid i}\right|$ and calculate Q_{k}
Step 3: Repeat (Step 2) R $>\mathbf{2 0 0 0}$ times. Then, calculate

$$
q^{*}(\alpha)=(1-\alpha) 100 \text { th percentile of all } Q_{i}^{\prime} s
$$

With the cutoff value calculated, we can decide which differences are significant. To do this, we compare $Z_{j \mid i}^{\text {obs }}$ to $q^{*}(\alpha)$. If $Z_{j \mid i}^{\text {obs }}>q^{*}(\alpha)$, we conclude that the proportions used in $Z_{j \mid i}^{\text {obs }}$ are significantly different.
Note: To tell what direction the dependence is after we have determined which $\left|Z_{j \mid i}^{\text {obs }}\right|>q^{*}(\alpha)$, we can tell by the sign of the difference between $p_{j \mid i}$ and $p_{j \mid i}$.
(i) If $p_{j \mid i}<p_{j \mid i i^{\prime}} \Longrightarrow$ probability of j in group i is less than probability of j in group i^{\prime}
(ii) If $p_{j \mid i}>p_{j \mid i{ }^{\prime}} \Longrightarrow$ probability of j in group i is greater than probability of j in group i^{\prime}

Chapter 7
 Week 7: Prob. Comparisons \&
 Bootstapping

7.1 Lecture 18: Independence \& Bootstrapping (Intro)

We begin with an example about finding dependence and its direction.

Example 7.1.1 (Car Color \& Gender). Color of car was compared with gender of buyer with the following results:

	$R=$ Red	$S=$ Silver	$B=$ Black	
F	2	16	3	21
M	3	2	4	9
	5	18	7	30

The permutation p-value was: 0.0025 .
(a) Find the estimated difference in buying each color, comparing by gender.

- Solution: A table giving the probabilities and differences is as follows:

Red	Silver	Black
$\hat{p}_{R \mid F}=2 / 21$	$\hat{p}_{S \mid F}=16 / 21$	$\hat{p}_{B \mid F}=3 / 21$
$\hat{p}_{R \mid M}=3 / 9$	$\hat{p}_{S \mid M}=2 / 9$	$\hat{p}_{B \mid M}=4 / 9$
$\hat{p}_{R \mid F}-\hat{p}_{B \mid F}=-0.238$	$\hat{p}_{S \mid F}-\hat{p}_{S \mid M}=0.540$	$\hat{p}_{B \mid F}-\hat{p}_{B \mid M}=-0.302$

(b) Calculate the relevant $Z_{j \mid i}$ values

- Solution: A table giving the values is

\mathbf{R}	\mathbf{S}	\mathbf{B}
$\bar{p}_{R}=5 / 30$	$\bar{p}_{S}=18 / 30$	$\bar{p}_{B}=7 / 30$
$Z_{R}=-1.604$	$Z_{S}=2.769$	$Z_{B}=-1.790$

Where, for example,

$$
\frac{\hat{p}_{R \mid F}-\hat{p}_{R \mid M}}{\sqrt{\bar{p}_{R}\left(1-\bar{p}_{R}\right)\left(1 / n_{F}+1 / n_{M}\right)}}
$$

was used in calculating Z_{R}.
(c) Based off of $R=5000$ permutations, the value of the cutoff is $q^{*}(\alpha=0.05)=2.114$. Which groups are significantly different and how?

- Solution: The only group that is significantly different is the silver group since $Z_{S}=2.769>2.114$. Thus, the proportion of males and females who buy silver cars is different with females tending to buy silver cars more often since the difference is positive.

7.1.1 Class so Far...

We have covered...

1. Single sample median, CDF, and percentiles
2. Independent two-sample tests
3. Independent k-sample tests
4. Linear Regression tests
5. Tests for Independence

Recall for tests 2-5 we used "permuting" the data in some way. When we permute data, we resample into each group, without replacement. In other words, each observation from each group is used exactly once.

Another method that can be used that also creates a distribution based on only one dataset is bootstrapping. This can be used in a huge variety of tests including all of what we have covered so far.

7.1.2 Bootstrapping

Let θ be the parameter we are interested in estimating. This could be one of the previous statistics, such as μ, θ_{m}, a percentile, etc. Generally, we know the distribution of our estimate and can use that to create HT and Cls .

In permutation tests, for example, we create a permutation distribution to find p-values but not confidence intervals. However, the permutation distribution assumes the null hypothesis is true in order to make these distributions.

Bootstrap distributions are also data driven distributions that we create from a single sample, but do not assume a particular H_{0} is true since the method of distribution generation is general. Let's review how we would find a sampling distribution of $\hat{\theta}$ given infinite resources:

1. Take a random sample from the population
2. Calculate $\hat{\theta}$ our sample estimate
3. Repeat (1) and (2) many, many times (ideally infinite)

This gives a sampling distribution of $\hat{\theta}$ since we would have many realizations of $\hat{\theta}$.
Of course, we don't actually do this; it is too time consuming and intensive. But, bootstrapping mimics this process so long as we are sure the sample we took is representative of the population it came from.

7.1.3 Bootstrapping Sample

A bootstrap sample and a bootstrap distribution have the following steps. Assume you have a single sample of X_{1}, \ldots, X_{n}. Then,

1. A bootstrap sample is resampling from X_{1}, \ldots, X_{n} with replacement. We mark these resampled values with an asterisk: $X_{1}^{*}, \ldots, X_{n}^{*}$ is one possible bootstrap sample
2. A bootstrap estimate $\hat{\theta}_{i}^{B}=\varphi\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ is formed from your bootstrap sample, note all X_{i}^{*} 's are mutually independent
3. Repeat (1) and (2) B times. B is typically in the 1000 s
4. The B values or $\hat{\theta}_{i}^{B}$ give a bootstrap distribution

Resampling with replacement adds variation to each bootstrap sample and mimics resampling from the population, though the values are repeated. Next, we will learn how to use this bootstrap distribution for statistical inference and point/interval estimation.

Fun Fact: If we observe n data points with m types of numbers yielding m empirical probabilities $\hat{p}_{1}, \ldots, \hat{p}_{m}$. The particular bootstrap sample we generate will follow a multinomial distribution. So, if we observe a bootstrap frequency vector $\left(n_{1}, \ldots, n_{m}\right)$, the chance of this occurring is:

$$
P\left(\left(N_{1}, \ldots, N_{k}\right)=\left(n_{1}, \ldots, n_{k}\right)\right)=P(\text { bootstrap sample })=\binom{n}{n_{1}, \ldots, n_{k}} \hat{p}_{1}^{n_{1}}, \ldots, \hat{p}_{m}^{n_{m}}
$$

In addition, each bootstrap variate X_{i}^{*} follows a categorical distribution $\mathcal{C}\left(\hat{p}_{1}, \ldots, \hat{p}_{m}\right)$ where we have

$$
X_{i}^{*}= \begin{cases}\gamma_{1} & \text { with chance } \hat{p}_{1} \\ \vdots & \vdots \\ \gamma_{m} & \text { with chance } \hat{p}_{m}\end{cases}
$$

where γ_{i} is the ith unique value observed in the original sample.

7.2 Lecture 19: Bootstrap Point/Interval Estimation

7.2.1 Estimating a Parameter

Some quantities that are often used to assess how good our estimate is are (assuming we are allowed to resample from the population N times):

Assessing Goodness of Estimate

1. Expected Value (Average): $E(\hat{\theta}) \approx \frac{1}{N} \sum \hat{\theta}_{i}$, for large N
2. Bias: $\operatorname{bias}(\hat{\theta})=E(\hat{\theta}-\theta)=E(\hat{\theta})-\theta$
3. Variance: $V(\hat{\theta}) \approx \frac{1}{N} \sum\left(\hat{\theta}_{i}-E(\hat{\theta})\right)^{2}$ for large N
4. Mean Squared Error $(\operatorname{MSE}): \operatorname{MSE}(\hat{\theta})=V(\hat{\theta})+\operatorname{bias}(\hat{\theta})^{2}$

Proof. By definition: $\operatorname{MSE}(\hat{\theta})=\frac{1}{N} \sum\left(\hat{\theta}_{i}-\theta\right)^{2}$. Manipulating this definition with the addition and subtraction of $E(\hat{\theta})$ gives:

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta}) & =\frac{1}{N} \sum\left(\hat{\theta}_{i}-E(\hat{\theta})+E(\hat{\theta})-\theta\right)^{2} \\
& =\frac{1}{N} \sum\left[\left(\hat{\theta}_{i}-E(\hat{\theta})\right)^{2}+(E(\hat{\theta})-\theta)^{2}+2\left(\hat{\theta}_{i}-E(\hat{\theta})(E(\hat{\theta})-\theta)\right]\right. \\
& =\frac{1}{N}\left[\sum\left(\hat{\theta}_{i}-E(\hat{\theta})\right)^{2}\right]+(E(\hat{\theta})-\theta)^{2}+0 \\
& =V(\hat{\theta})+\operatorname{bias}(\hat{\theta})^{2}
\end{aligned}
$$

$$
\left(\sum\left(\hat{\theta}_{i}-E(\hat{\theta})\right) \approx 0\right)
$$

(by definition)
This concludes the proof.
5. Chebyshev-Markov in Equality (distribution independent):

$$
P(|\hat{\theta}-\theta| \leq k \sqrt{M S E}) \geq 1-\frac{1}{k^{2}} \quad \forall k \geq 1
$$

Note the use of $\sqrt{\text { MSE }}$ instead of $\sigma_{\hat{\theta}}$ for the inequality. We can do this because $M S E \approx \sigma_{\hat{\theta}}^{2}=V(\hat{\theta})$ assuming we use a reasonably unbiased estimator for θ. It is best to keep the MSE rather than the variance only because in practice there will always be bias (finite amount of samples). In the infinite case, we can disregard the bias as it is 0 for an unbiased estimator.
As a statement, the probability means that the chance that $\hat{\theta}$ is within $k \sqrt{M S E}$ from θ (in either direction) is at least $1-1 / k^{2}$.

We can estimate all these values with a bootstrap distribution. Assume you have B^{*} bootstrap estimates of θ (ex: the sample mean). Call them $\hat{\theta}_{1}^{B}, \ldots, \hat{\theta}_{B^{*}}^{B}$ (the superscript tells us that these are bootstraped estimates). The corresponding bootstrap estimates of the true sampling distribution of $\hat{\theta}$ are:

Bootstrap Estimates Qualities

1. Bootstrap Expected Value: $\hat{E}(\hat{\theta})=\frac{1}{B^{*}} \sum_{i=1}^{B^{*}} \hat{\theta}_{i}^{B}$
2. Bootstap Bias: $\operatorname{bias}(\hat{\theta})=\hat{E}\left(\hat{\theta}-\hat{\theta}^{\mathrm{obs}}\right)=\hat{E}(\hat{\theta})-\hat{\theta}^{\mathrm{obs}}$ where $\hat{\theta}^{\mathrm{obs}}=$ estimate from original sample
3. Bootstap Variance: $\hat{V}(\hat{\theta})=\frac{1}{B^{*}} \sum\left(\hat{\theta}_{i}^{B}-\hat{E}(\hat{\theta})\right)^{2}$
4. Bootstrap MSE: $\hat{S} \hat{S} E=\hat{V}(\hat{\theta})+\hat{\operatorname{bias}(\hat{\theta})^{2}}$
5. Bootstrap Chebyshev-Markov Inequality: For a given value k, we have

$$
\hat{P}(|\hat{\theta}-\theta| \leq k \sqrt{M \hat{S} E}) \geq 1-\frac{1}{k^{2}}
$$

None of these calculations required any known knowledge of a distribution for $\hat{\theta}$. This technique can be used for any sample size as well. Notice that the standard error or estimated standard deviation can be calculated as

$$
\hat{S E}(\hat{\theta})=\sqrt{\hat{V}(\hat{\theta})}
$$

which we will use in some confidence intervals.

Example 7.2.1 (Bootstrap vs. Parametric). Let's compare a parametric test with known values of $E(\hat{\theta})$, $\operatorname{bias}(\hat{\theta}), M S E, S E(\hat{\theta})$. Suppose we simulate data from a population where $\mu=37.8243, \sigma=6.507154$. Let the estimator be $\hat{\theta}=\bar{X}$.

A random sample of size 60 was taken with sample mean $\bar{x}=37.5833$ standard deviation $S E(X)=6.282$.
By parametric theory \bar{X} should have no bias (sample was i.i.d., sometimes this isn't always true though) and $S E(\bar{X})=\hat{\sigma}_{\bar{X}}=s / \sqrt{n}=6.282 / \sqrt{60}=0.81100$. Based on 5000 bootstrap samples, we find...

$$
\begin{array}{cc}
\hat{E}(\hat{\theta})=37.57745 & \text { bias }(\hat{\theta})=-0.0058767 \\
\hat{S E}(\hat{\theta})=\hat{\sigma}_{\bar{x}}=0.807116 & M \hat{S} E(\hat{\theta})=0.65147 \\
\hline
\end{array}
$$

Notice our bootstrap SE is lower and we estimated our bias as -0.0058767 . If we assume that $\hat{\theta}^{\text {obs }}$ came from the bootstrap distribution since we would never have knowledge about any parametric assumptions about the data we sampled, then we adjust $\hat{\theta}^{\text {obs }}$ by the bootstrap bias:

$$
\begin{aligned}
\hat{\theta}^{\text {obs }}-(-0.0058767) & =37.5833+0.0058767 \\
& =37.58921
\end{aligned}
$$

Thus, bootstrap is fairly competitive even when parametric assumptions hold (the estimate
is close to the parametric (true) estimate). Notice bootstrapping assumed nothing about the data we collected.

The example gives way to a handy definition:

Definition 7.2.1 (Bias-Corrected Estimate). The bootstrap bias-corrected estimate of θ is

$$
\hat{\theta}_{c}=\hat{\theta}^{o b s}-b \hat{i a} s(\hat{\theta})
$$

7.2.2 Bootstrap Confidence Intervals

There are many different types of bootstrap Cls , some of which mimic a traditional Cls while others do not. We give 2 such intervals now:

Bootstrap Cls

1. Percentile Method

- This method is simple to implement, but only works well when the distribution is symmetric. What "works well" is typically defined to be the realized confidence level. $(1-\alpha) 100 \%$ is the theoretical confidence level; we won't get this level of confidence in practice.
$\mathrm{A}(1-\alpha) 100 \%$ percentile bootstrap Cl is:
- Create B bootstrap estimates. Then the CI is $\left(\hat{\theta}_{\alpha / 2}^{B}, \hat{\theta}_{1-\alpha / 2}^{B}\right)$ i.e. the $(\alpha / 2) 100$ th and $(1-\alpha / 2) 100$ th percentiles of the bootstrap distribution. While this Cl is easy to implement, it often has much lower coverage than it should.

2. Empirical Bootstrap Cl

- Typically when we make a Cl (such as for the population mean μ), we use

$$
P\left(\delta_{\alpha / 2}<\hat{\theta}-\theta<\delta_{1-\alpha / 2}\right)=1-\alpha
$$

and we know the distribution of δ. Then, the CI is: $\left(\hat{\theta}-\delta_{\alpha / 2}, \hat{\theta}-\delta_{1-\alpha / 2}\right)$. For this Cl , we estimate the percentiles of the differences $\hat{\theta}-\theta$ with bootstrapping. We use these steps:
(a) Create a bootstrap sample, find $\hat{\theta}_{i}^{B}$
(b) Find $\delta_{i}^{B}=\hat{\theta}_{i}^{B}-\hat{\theta}^{\mathrm{obs}}$
(c) Repeat (a) and (b) B times to form the distribution of δ.

The empirical bootstrap Cl is then:

$$
\begin{aligned}
& \left(\hat{\theta}^{\mathrm{obs}}-\delta_{\alpha / 2}, \hat{\theta}^{\mathrm{obs}}-\delta_{1-\alpha / 2}\right) \\
\Longleftrightarrow & \left(2 \hat{\theta}^{\mathrm{obs}}-\hat{\theta}_{\alpha / 2}^{B}, 2 \hat{\theta}^{\mathrm{obs}}-\hat{\theta}_{1-\alpha / 2}^{B}\right) \quad\left(\delta_{p}^{B}=\hat{\theta}_{p}^{B}-\hat{\theta}^{\mathrm{obs}} \text { for any percentile } p\right)
\end{aligned}
$$

This Cl often has a higher coverage probability than the percentile method.

7.3 Lecture 20: BCA Bootstrap CI

7.3.1 Bootstrap Cls continued

We give an additional method for creating a bootstrap Cl .

Bias Corrected and Accelerated (BCA) Bootstrap CI

This method requires the most mathematical explanation.

First it assumes that there exists some transformation T of $\hat{\theta}$ such that $T(\hat{\theta})$ is normally distributed. The transformation that allows this to happen is (see [5])

$$
T(\hat{\theta})=T(\theta)+\sigma_{T(\theta)}\left(Z-z_{0}\right) \quad(Z \sim N(0,1))
$$

where $\sigma_{T(\theta)}=\sqrt{V(T(\hat{\theta}))}=1+a T(\theta)$. Naturally, then, this means that

$$
E(T(\hat{\theta}))=T(\theta)-z_{0}[1+a T(\theta)]
$$

where z_{0} is some standard normal percentile.
Now if $T(\hat{\theta})$ is actually normally distributed, we know

$$
\begin{aligned}
P\left(-z_{1-\alpha / 2} \leq \frac{T(\hat{\theta})-E(T(\hat{\theta}))}{\sqrt{V(T(\hat{\theta}))}} \leq z_{1-\alpha / 2}\right) & =1-\alpha \\
\Longrightarrow P\left(-z_{1-\alpha / 2} \leq \frac{T(\hat{\theta})-\left(T(\theta)-z_{0}(1+a T(\theta))\right)}{1+a T(\theta)} \leq z_{1-\alpha / 2}\right) & =1-\alpha \\
\Longrightarrow P\left(-z_{1-\alpha / 2} \leq \frac{T(\hat{\theta})-T(\theta)}{1+a T(\theta)}+z_{0} \leq z_{1-\alpha / 2}\right) & =1-\alpha \\
\Longrightarrow P\left(\frac{T(\hat{\theta})+z_{0}-z_{1-\alpha / 2}}{1-a\left(z_{0}-z_{1-\alpha / 2}\right)} \leq T(\theta) \leq \frac{T(\hat{\theta})+z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)}\right) & =1-\alpha
\end{aligned}
$$

Now, we do not actually know the distribution at $\hat{\theta}$ but if we were to estimate it with a bootstrap distribution $\hat{\theta}^{B}$. An assumption we make is that the bootstrap distribution is a close approximation to the true (unknown) sampling distribution. It is then the case that the bootstrap distribution is conditional on the point estimate we observe. Hence, we can write the transformation for the bootstrap distribution as (see [2])

$$
T\left(\hat{\theta}^{B}\right)=T(\hat{\theta})+\sigma_{T(\hat{\theta})}\left(Z-z_{0}\right)
$$

where

$$
\sigma_{T\left(\hat{\theta}^{B}\right)}=\sqrt{V\left(T\left(\hat{\theta}^{B}\right)\right)}=1+a T(\hat{\theta})
$$

and

$$
E\left(T\left(\hat{\theta}^{B}\right)\right)=T(\hat{\theta})-z_{0}(1+a T(\hat{\theta}))
$$

If we focus on only the upper bound in the last probability statement given above, we have an analogous statement:

$$
\begin{align*}
& P\left(\left.T(\hat{\theta}) \leq \frac{T\left(\hat{\theta}^{B}\right)+z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)} \right\rvert\, T(\hat{\theta})\right) \tag{7.3.1}\\
& =P\left(\frac{T(\hat{\theta})-E(\hat{\theta})}{\left.\left.\sqrt{V(T(\hat{\theta}))} \leq z_{0}+\frac{T\left(\hat{\theta}^{B}\right)+z_{0}+z_{1-\alpha / 2}-T(\hat{\theta})\left[1-a\left(z_{0}+z_{1-\alpha / 2}\right)\right]}{\left(1-a\left(z_{0}+z_{1-\alpha / 2}\right)\right)(1+a T(\hat{\theta}))} \right\rvert\, T(\hat{\theta})\right)}\right. \tag{7.3.2}\\
& =P\left(\left.Z \leq z_{0}+\frac{T\left(\hat{\theta}^{B}\right)-T(\hat{\theta})}{\left(1-a\left(z_{0}+z_{1-\alpha / 2}\right)\right)(1+a T(\hat{\theta}))}+\frac{z_{0}+z_{1-\alpha / 2}[1+a T(\hat{\theta})]}{\left(1-a\left(z_{0}+z_{1-\alpha / 2}\right)\right)(1+a T(\hat{\theta}))} \right\rvert\, T(\hat{\theta})\right) \tag{7.3.3}
\end{align*}
$$

$$
\approx P\left(Z \leq z_{0}+\frac{z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)}\right) \quad\left(T\left(\hat{\theta}^{B}\right) \approx T(\hat{\theta})\right)
$$

Where (7.3.2) was possible since $T(\hat{\theta})$ is still a random variate (we haven't observed $\hat{\theta}$ yet). In short, we have just shown:

$$
\begin{aligned}
& P\left(\left.T(\hat{\theta}) \leq \frac{T\left(\hat{\theta}^{B}\right)+z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)} \right\rvert\, T(\hat{\theta})\right) \\
& \approx P\left(Z \leq z_{0}+\frac{z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)}\right)
\end{aligned}
$$

Which implies that the upper estimate for the BCA Cl is at the location u of the bootstrap distribution where

$$
u=F_{\hat{\theta} B}^{-1}\left(\Phi\left(z_{0}+\frac{z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)}\right)\right)
$$

and $F_{\hat{\theta} B}^{-1}(\cdot)$ is the quantile function of the bootstrap distribution. We use this form because we know the transformed bootstrap is approximately normal, so we can compute a quantile with the same area as the one given for the standard normal curve in the approximation. Since $T\left(\hat{\theta}^{B}\right)$ is just transformed data, areas stay the same and we can use quantiles of $\hat{\theta}^{B}$'s distribution to get the upper bound for the Cl (this is similar to what we do when we standardize variates and then compute quantiles for the actual data, so long as the transformation is monotonic).

Using the same process, we can show the lower bound for the Cl is

$$
I=F_{\hat{\theta}^{B}}^{-1}\left(\Phi\left(z_{0}+\frac{z_{0}-z_{1-\alpha / 2}}{1-a\left(z_{0}-z_{1-\alpha / 2}\right)}\right)\right)
$$

In practice, we can never achieve the upper and lower bounds exactly due to the discrete nature of the bootstrap distribution. Note also that I and u are dependent on a and z_{0} so it is fair to write $I=I\left(a, z_{0}\right)$ and $u=u\left(z, z_{0}\right)$. Our next task is to find what these constants are. First, we state how we interpret them [5]:

$$
\begin{array}{rr}
a=\text { acceleration constant } & \text { (increases variance of trans. distn.) } \\
z_{0}=\text { bias correction constant } & \text { (shifts trans. distn.) }
\end{array}
$$

Notice: This means we have to estimate z_{0} and a but we do not have to use the exact transformation of $T(\hat{\theta})$. We assume it exists but never actually need to know it, although we did give one form earlier.

- Estimating z_{0}

$-z_{0}$ is a measure of bias in the data using the median. If we think of $\hat{\theta}$ as the best estimate of θ, then we can get a count of how well the bootstrap estimates approximate θ by counting the amount of values below $\hat{\theta}$. Ideally, if there was no bias, each transformed bootstrap estimate would have an equal chance (50%) of being below $T(\hat{\theta})$. Hence,

$$
\text { Let } p_{0}=\left(\# \text { of } T\left(\hat{\theta}^{B}\right) \leq T(\hat{\theta})\right) / B
$$

Since the transformation T is monotonic, we have

$$
\begin{aligned}
p_{0} & =\left(\# \text { of } \hat{\theta}^{B} \leq \hat{\theta}\right) / B \\
& =\text { proportion of bootstrap } \hat{\theta}^{\prime} s \leq \text { sample } \hat{\theta}
\end{aligned}
$$

Notice under our transformation $p_{0} \approx P\left(T\left(\hat{\theta}^{B}\right) \leq T(\hat{\theta})\right)$, we normalize this accordingly

$$
\begin{aligned}
p_{0} & \approx P\left(T\left(\hat{\theta}^{B}\right)-E\left(T\left(\hat{\theta}^{B}\right)\right) \leq T(\hat{\theta})-\left[T(\hat{\theta})-z_{0}\left(\sigma_{T\left(\hat{\theta}^{B}\right)}\right)\right]\right) \\
& =P\left(\frac{T\left(\hat{\theta}^{B}\right)-E\left(T\left(\hat{\theta}^{B}\right)\right)}{\sigma_{T\left(\hat{\theta}^{B}\right)}} \leq z_{0}\right) \\
& =P\left(Z \leq z_{0}\right)
\end{aligned}
$$

Thus, z_{0} is a point such that $p_{0}=P\left(Z \leq z_{0}\right)$. Notice, if p_{0} is large, then z_{0} is large as well. Also, under no bias: $E\left(T\left(\hat{\theta}^{B}\right)\right)=T(\hat{\theta})$.

- Estimating a

- a is a measure of skewness in the data to estimate the effect of each X_{i} (data) on the distribution of we leave the i th X_{i} out of the data and calculate $\hat{\theta}_{-i}$ (the estimate of θ without the i th X_{i}). This is known as jackknife resampling. Do this for all i and calculate $\hat{\theta}_{(-1)}=$ mean of all $\hat{\theta}_{-i}$.

Based on bootstrap theory,

$$
a=\frac{\sum_{i}\left(\hat{\theta}_{(-1)}-\hat{\theta}_{-i}\right)^{3}}{6\left[\sum_{i}\left(\hat{\theta}_{(-1)}+\hat{\theta}_{-i}\right)^{2}\right]^{3 / 2}}
$$

Notice we cube the differences to keep the sign of the skew. If $a=0$, then there is symmetry in the data.
To summarize,

$$
\begin{aligned}
& \mathrm{BCACI}=\left[F_{\hat{\theta}^{B}}^{-1}(\Phi(\gamma)), F_{\hat{\theta}^{B}}^{-1}(\Phi(\delta))\right] \\
& \quad \text { where } \gamma=z_{0}+\frac{z_{0}+z_{1-\alpha / 2}}{1-a\left(z_{0}+z_{1-\alpha / 2}\right)}, \quad \delta=z_{0}+\frac{z_{0}-z_{1-\alpha / 2}}{1-a\left(z_{0}-z_{1-\alpha / 2}\right)}
\end{aligned}
$$

This Cl will be done in R in practice. On an exam, it would be given or values for z_{0}, a would be provided.

Note: If a bootstrap distribution is symmetric, the Cl bounds for the Percentile, Empirical, and BCA will be similar.

Example 7.3.1 (Interval Comparisons). Suppose data from an exponential distribution (skewed positively) is simulated, with a population mean of 10 and standard deviation 10. Suppose we want to estimate

1. The mean (10)
2. The median (6.9315)
3. The standard deviation (10)

Using R, The 95% Cls for all three are (with $B=10,000$:

	mean	median	standard deviation
Percentile	$(8.18,14.044)$	$(6.360,10.411)$	$(6.050,14.443)$
Empirical	$(7.766,13.627)$	$(5.795,9.846)$	$(7.329,15.722)$
BCA	$(8.535,14.700)$	$(6.413,10.411)$	$(7.480,15.572)$

Ideally, since the Cl level is the same, the best intervals have a smaller width (difference between upper bound and lower bound). Out of the ones given, which are best?

Note: We can use these boot-strapping methods to find estimates for any θ based off of a single sample so long as an estimator based off of the data we have is known for it.

Chapter 8
 Week 8: Bootstrap "t" Interval

8.1 Lecture 21: Bootstrap "t" Interval

8.1.1 General Method

Some bootstrap Cls use the parametric form as a starting point, and then modify what is needed in the parametric assumptions are violated. In a parametric setting, we can assume

$$
\hat{\theta} \sim N\left(E(\hat{\theta}), \sigma_{\hat{\theta}}^{2}\right)
$$

for a single sample. A parametric Cl is typically then:

$$
\hat{\theta} \pm t_{1-\alpha / 2} S E(\hat{\theta})
$$

But, if assumptions are violated, then the distribution used is not actually normal (or t). But we can bootstrap it (create a bootstrap distribution)!
A " t " bootstrap interval has the following steps:

t Bootstrap Interval

Step 1: Find $\hat{\theta}$, the observed estimate
Step 2: Generate bootstrap sample
Step 3: Calculate $\hat{\theta}_{i}^{B}$, the bootstrap estimate
Step 4: Calculate $t_{i}^{B}=\left(\hat{\theta}_{i}^{B}-\hat{\theta}\right) / \hat{S E}^{B}(\hat{\theta})$
Step 5: Repeat 2-4 B times
We now have a bootstrap distribution of t^{B}. The " t " bootstrap Cl is then:

$$
\left[\hat{\theta}-t_{1-\alpha / 2}^{B} S E(\hat{\theta}), \hat{\theta}+t_{1-\alpha / 2}^{B} S E(\hat{\theta})\right]
$$

Where

$$
\begin{aligned}
t_{1-\alpha / 2}^{B} & =(1-\alpha / 2) 100 t h \text { percentile of } t^{B} \\
t_{\alpha / 2}^{B} & =(\alpha / 2) 100 t h \text { percentile of } t^{B}
\end{aligned}
$$

Note: t^{B} is a distribution with negative and positive values but not necessarily symmetric (it's bootstrapped, so it reflects what information the sample gives it). Also, we have only replaced $t_{1-\alpha / 2}$ and $t_{\alpha / 2}$ from the parametric Cl with bootstrap estimates of them.

When to use what Cl for single samples?

1. When the theoretical $S E$ and distribution of $\hat{\theta}$ are known and the bootstrap distribution is symmetric, " t " intervals tend to outperform all others
2. If the distribution is symmetric (not necessarily normal or t), then empirical Cls or BCA Cls tend to outperform the others
3. If there is significant skew in the distribution, BCA will outperform the others

Here are some examples of when you could use a t bootstrap Cl :

1. $\hat{\theta}=\bar{x}$ (sample mean) since $\bar{X} \sim N(\mu, \sigma / \sqrt{n})$
2. $\hat{\theta}=\hat{p}$ (sample proportion) since $\hat{p} \sim N(p, \sqrt{p(1-p) / n})$

8.1.2 Bootstrapping with Two Samples

When we have two samples, we need to adjust how we create a bootstrap sample. First, we will look at the empirical, percentile, and BCA methods. Before we discuss the interval method, we give some notation:

Notation: Let $Y_{i j}=j$ th value in ith group. Let $n_{i}=\#$ of observations in group i. Note the bounds for i and j are $i \in\{1,2\}$ and $j \in\left\{1,2, \ldots, n_{i}\right\}$.

To form a bootstrap sample we follow these steps:

2-sample t Bootstrap CI Method

Step 1 Calculate $\hat{\theta}$ from your sample. Examples of $\hat{\theta}$ could be

$$
\hat{\theta}=\bar{Y}_{1}-\bar{Y}_{2} \quad \hat{\theta}=\text { median }_{1}-\text { median }_{2} \quad \hat{\theta}=s_{1}-s_{2}(\text { diff in sd. dev. })
$$

etc...
Step 2 Resample n_{1} from $Y_{11}, \ldots, Y_{1 n}$ with replacement. This forms a bootstrap sample for group I. Similarly, resample n_{2} from $Y_{21}, \ldots, Y_{2 n}$ with replacement.
Step 3 Calculate $\hat{\theta}_{i}^{B}$ based on the bootstrap samples

Step 4 Repeat 2-3 B times to obtain the bootstrap distribution of $\hat{\theta}_{i}^{B}$

From here, we can calculate empirical and percentile Cls as usual (same forms as before). But, when we calculate "a" in the BCA CI, we need to adjust how we "leave one out" (conduct jackknife sampling).
Jackknife Correction for 2-samples: To "leave one out" we treat all $n_{1}+n_{2}$ observations as one group and leave out one at a time. This means one of the groups sample size changes, but not both. We pool the samples essentially.

8.1.3 "t" Method for Two Samples

When $\hat{\theta}$ has a known distribution and $S E$ (for example with $\hat{\theta}=\bar{Y}_{1}-\bar{Y}_{2}$) we can also use the t-bootstrap Cls as an approximation to the Cl derived from the following test statistic

$$
Z_{s}=\frac{\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}=\frac{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}{\sqrt{\sigma_{\epsilon_{1}}^{2} / n_{1}+\sigma_{\epsilon_{2}}^{2} / n_{2}}}
$$

Where $\bar{\epsilon}_{i}=\bar{Y}_{i}-\mu_{i}$ and are referred to as the "average errors." The test statistic involving only the errors is known as the centered test statistic since we centered each group by subtracting the sample averages with the mean. Notice $\sigma_{i}^{2}=\sigma_{\epsilon_{i}}^{2}$ since the transformation $\bar{Y}_{i}-\mu_{i} \mapsto \bar{\epsilon}_{i}$ only shifts the data uniformly, keeping variance the same. Now, in order to estimate a t_{s} from bootstrapping we need to estimate $\sigma_{1}^{2}, \sigma_{2}^{2}, \bar{\epsilon}_{1}$, and $\bar{\epsilon}_{2}$. If we set

$$
\epsilon_{i j}=Y_{i j}-\mu_{i}
$$

it then follows that we can estimate this quantity with $e_{i j}=Y_{i j}-\bar{Y}_{i}$ and we naturally get

$$
\bar{e}_{i}=\frac{1}{n_{i}} \sum_{j} e_{i j}=\frac{1}{n_{i}} \sum_{j}\left[Y_{i j}-\bar{Y}_{i}\right]
$$

For the variance, we note

$$
\begin{aligned}
\sigma_{i}^{2} \approx s_{i}^{2} & =\frac{1}{n_{i}-1} \sum_{j}\left(Y_{i j}-\bar{Y}_{i}\right)^{2} \\
& =\frac{1}{n_{i}-1} \sum_{j}\left(\left[Y_{i j}-\mu_{i}\right]-\left[\bar{Y}_{i}-\mu_{i}\right]\right)^{2} \\
& =\frac{1}{n_{i}-1} \sum_{j}\left(\epsilon_{i j}-\bar{\epsilon}_{i}\right)^{2} \\
& \approx \frac{1}{n_{i}-1} \sum_{j}\left(e_{i j}-\bar{e}_{i}\right)^{2}=s_{e_{i}}^{2} \quad\left(\bar{\epsilon}_{i} \approx \bar{e}_{i}, \epsilon_{i j} \approx e_{i j}\right)
\end{aligned}
$$

We then estimate our test statistic with

$$
t_{e}=\frac{\bar{e}_{1}-\bar{e}_{2}}{\sqrt{s_{e_{1}}^{2} / n_{1}+s_{e_{2}}^{2} / n_{2}}}
$$

Note: $\bar{e}_{i}=0$ for our observed sample but for all bootstrapped samples $\bar{e}_{i}^{*} \neq 0$ since it is now:

$$
\bar{e}_{i}^{*}=\frac{1}{n_{i}} \sum_{j}\left(Y_{i j}-\bar{Y}_{i}\right)^{B}
$$

So our bootstrap procedure is:

t Method for 2-samples

Step 1 Calculate all residuals $e_{i j}=Y_{i j}-Y_{i}$
Step 2 Create bootstrap samples of the residuals of the data, resampling within groups only Step 3 Calculate

$$
t_{e, i}^{B}=\frac{\bar{e}_{1}^{*}-\bar{e}_{2}^{*}}{\sqrt{s_{e_{1}^{*}}^{2} / n_{1}+s_{e_{2}^{*}}^{2} / n_{2}}}
$$

based on bootstap sample
Step 4 Repeat 2-3 B times to obtain the bootstrap distribution
Our Cl is then:

$$
\left[\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-t_{1-\alpha / 2}^{B} \sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}},\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-t_{\alpha / 2}^{B} \sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}}\right]
$$

Chapter 9

Week 9: Interval Comparisons \&

KNN

9.1 Lecture 22: Interval Comparisons

We begin with an example that demonstrates multiple Cls and gives when to use which one.

Example 9.1.1 (Cattle Weight Gain). The average daily weight gain in pounds for cattle based on two diets " A " and " B " are as follows:

$$
\begin{array}{lllllllll}
A: & 1.40 & 1.23 & 1.02 & 0.98 & 1.34 & 1.36 & 1.15 & 1.27 \\
B: & 1.16 & 0.99 & 1.04 & 1.02 & 1.09 & 1.12 & 0.76 & 0.88 \\
\hline
\end{array}
$$

With summary statistics

	A	B
mean	1.22	1.01
std. dev.	0.156	0.132
size	8	8

(a) Why might we consider a non-parametric technique?

- Solution: The sample size is small and there is no reason to believe that the populations are normal (hard to assess normality).
(b) Name three non-parametric techniques we could use to determine if group A tends to be larger than group B.
- Solution: We could use...

1. Permutation test
2. WRS/MW
3. Bootstrapping
(c) Calculate the 95% bootstrap intervals for the difference in means $\left(\mu_{A}-\mu_{B}\right)$

- Solution: The 95% bootstrap confidence intervals are as follows:

	$C l$
Percentile	$(0.0787,0.3438)$
BCA	$(0.0794,0.3500)$
$" t "$	$(0.0583,0.3698)$

(d) Calculate the widths and center for each Cl

- Solution: Note that we define the width and center for a Cl as

$$
\begin{aligned}
& \text { Width }=(\text { Length of Interval })=(\text { upper bound }- \text { lower bound }) \\
& \text { Center }=(\text { Midpoint of Interval })=(\text { upper bound }+ \text { lower bound }) / 2
\end{aligned}
$$

This gives...

	Percentile	BCA	t
Widths:	0.2651	0.2706	0.3115
Center:	0.2135	0.2147	0.2140

If all Cls were appropriate, we could potentially use the widths to pick the best one. Smaller width \Longrightarrow better interval. Notice that unlike most Cls, these are not centered about the sample estimates $\bar{Y}_{A}-\bar{Y}_{B}=1.22-1.01=0.21$

9.1.1 When to use what type of Cl

Some guidelines for choosing which Bootstrap Cl to use:

1. Unless your bootstrap distribution of looks perfectly symmetric, using the percentile method is not generally suggested. This is because even in the presence of slight skew, the actual confidence level is often $>(1-\alpha) 100 \%$ (more area coverage)
2. When the bootstrap distribution is approximately symmetric, the empirical distribution performs well
3. If skew exists in the bootstrap distribution, the BCA method is preferred since it is designed for those cases
4. If the distribution of is known (close to t or normal), a " t " method may be preferred (bootstrapped t-percentiles are close to actual t-percentiles)

Note: The main problem with bootstrapping is that the type of sample will heavily effect the estimates, Cls, etc... While this is true for most statistical tests, it is especially true for both permutation and bootstrap $\mathrm{Cls} /$ Tests.

9.2 Lecture 23: K-Nearest Neighbors (KNN)

9.2.1 K-Nearest Neighbors

This is a "machine learning" technique that is focused on prediction of Y (either continuous or categorical) based on one or more X variables (typically continuous). Prediction can certainly be done with parametric modeling such as logistic or linear regression, but they can be viewed as having some problems:

1. Traditional (parametric) models typically do not outperform "machine learning" techniques. This is because traditional models have a strict framework and can have goals other than prediction. For example, traditional models could want to explain how X effects Y, rather than focus on prediction only.
2. Traditional models do not work for all types of data. If your data trend does not match your model, then your model will not perform well. Some data can't be put in a parametric setting because we lack information, so any parametric model will naturally not work well as assumptions are likely violated.
3. When sample sizes are large, \bar{X} has a small SE and thus statistically all variables are significant. They may not be practically significant on their own, however.

K-Nearest Neighbors (KNN) can be used without a model assumption. There are very little assumptions in general and it is very good at prediction. We do assume a random sample was taken, though. We do not, however, get any information on how X affects Y.

KNN Set-up

Assume all X 's are numerical. For example,
$Y=$ Netflix Ratings
$X=$ Previous Ratings, Previous Customer's Ratings
$Y=$ House Price
$X=$ Square Footage, Acres, Bedrooms, Distance to major highway, etc...
$Y=$ Cell phones sold per month
$X=$ price of phone, screen size, memory, camera quality, etc...

We need (as usual) a dataset $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, p\right\}$. Our aim is to predict one new variate we recently sampled given only one of the X 's and Y 's. I.e. predict a new house price given a new square footage. We give some notation:

Notation: Let x_{j}^{*} be the new data, with y_{j}^{*} unknown. Then, we set

$$
D_{i j}=\text { measure of the "distance" between } x_{i}, x_{j}^{*} \quad \forall i \in\{1, \ldots, n\}, \forall j \in\left\{1, \ldots, n^{*}\right\}
$$

where

$$
\begin{aligned}
n & =\text { sample size of "known" data } \\
n^{*} & =\text { sample size of "unknown" } y_{j}^{*} \text { s }
\end{aligned}
$$

The main idea behind KNN is "use the K closest" known data points $\left(x_{i}, y_{i}\right)$'s to predict our unknown y_{j}^{*}. When Y is continuous, we would use the average of the nearest K to predict a new y_{j}^{*}, call it $y_{j}^{\text {pred }}$.

Example 9.2.1 (Weight vs. Height). Say we want to predict the weight of a subject based on their height. We have the following data:

Height:	64.5	73.3	68.8	65	69	64.5	66	66.3	68.8	64.5
Weight:	118	143	172	147	146	138	175	134	172	118
$D_{i j}:$	2.5	6.3	1.8	2.0	2.0	2.5	1.0	0.7	1.8	2.5

Our $x_{j}^{*}=67$ and we want to predict y_{j}^{*}. Define $D_{i j}=\left|x_{i}-x_{j}^{*}\right|$ (absolute difference).
Let's say we want to use just one nearest neighbors. This would be the $\left(x_{i}, y_{i}\right)$ with the lowest $D_{i j}$ or $\left(x_{i}, y_{i}\right)$ such that $\min _{i, j}\left(D_{i j}\right)$ is achieved, which is $(134,66.3)$ which implies $y_{j}^{\text {pred }}=134$.
If we use the two nearest neighbors, we have the two smallest pairs of points with the lowest distance as $(134,66.3)$ and $(175,66)$ which implies (since weight is continuous) $y_{j}^{\text {pred }}=$ $(175+134) / 2=154$.

In summary, for different K 's we have

K	1	2	3	4	5	6	7	8	9	10
$y_{j}^{\text {pred }}$	134	154	160.33	163.25	160	157.67	154.8	150.25	146.67	146.3

Notice that K has a very strong effect on what $y_{j}^{\text {pred }}$ is.

Some Questions

1. What if multiple $D_{i j}$ are tied?

- Remedy: You may either randomly select one to be the neighbor or increase K and use all of them

2. What if Y is categorical?

- Remedy: Use the highest probability out of all neighbors

3. What distance should we use?

- Remedy: There are two very common measures, if we let there be c predictors, then each observation is really $\left(\vec{x}_{i}, y_{i}\right)$ and a new observation is \vec{x}_{j}^{*}. Our aim is to minimize the distance between \vec{x}_{i} and \vec{x}_{j}^{*} and we can do this using vector norms:
- Euclidean: $D_{i j}=\left\|\vec{x}_{i}-\vec{x}_{j}^{*}\right\|_{2}$
- Manhattan: $D_{i j}=\left\|\vec{x}_{i}-\vec{x}_{j}^{*}\right\|_{1}$

We end with an example of using the nearest neighbor approach on categorical data:

Example 9.2.2 (Categorical KNN). Suppose a plot of our data looks like:

Where $Y=0, \times$ are the two categorical values Y can take. Then...

- If $k=1$, the nearest to Δ is an $\times \Longrightarrow y_{j}^{\text {pred }}=\times$
- If $k=2$, the nearest to $\boldsymbol{\Delta}$ is $\times, \times \Longrightarrow y_{j}^{\text {pred }}=\times$
- If $k=3$, the nearest to $\boldsymbol{\Delta}$ is $x, x, \circ \Longrightarrow y_{j}^{\text {pred }}=x$
- If $k=4$, the nearest to $\boldsymbol{\Delta}$ is $\times, \times, \circ, \circ \Longrightarrow y_{j}^{\text {pred }}=x$, o with 50% chance of either

Chapter 10

Week 10: KNN (cont.)

10.1 Lecture 24: More KNN \& CV

10.1.1 KNN (cont.)

Notice the K with the most volatility in prediction is $K=1$ (one neighbor). This means that $y_{j}^{\text {pred }}$ is subject to change the most when we predict with only one neighbor. On the other hand, the K with the least volatility is $K=n$, but will always predict a new observation as \bar{y}, (the sample mean for Y). Notice, if our prediction always changes for new measurements, then it does not effectively measure the relationship between the predictor and response. If the prediction is always the same, then we still haven't captured the true relationship between X and Y as we ignore any variability. So, we need a K that is in between the two. How do we pick that K ?

10.1.2 Cross Validation

In practice, we are highly interested in how well our model predicts new Y values. While we have some ways to this, we ideally could have some new data to test our model.

Cross validation can be used to see how well our data would do in predicting new data, and it is an extension of "leave one out" (jackknife) methods.

10.1.3 f-fold-CV

The idea is relatively simple. To pick the best K for many values of K we split our data (randomly) into f parts. The process is:

f-Fold-CV Process

Say $f=10$. We "leave out" $1 / 10$ of the data, and use KNN with the remaining (9/10)'s of the data to predict the $(1 / 10)$ th we left out. Repeat this for every $(1 / 10)$ th of the data we
left out. We then have

$$
\begin{aligned}
y_{i} & =\text { original value of } y \\
\hat{y}_{i}^{C V} & =\text { predicted } y_{i} \text { using } \mathrm{CV}
\end{aligned}
$$

For all $i \in\{1, \ldots, n\}$.

The overall CV error is then:

Overall CV Error

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}^{C V}\right)^{2}
$$

And a comparative measure to see if we did any better than \bar{y} is $\mathbf{P R E} \mathbf{E V}_{\mathrm{CV}}$:

$$
\begin{aligned}
P R E_{C V} & =\frac{\sum\left(y_{i}-\bar{y}\right)^{2}-\sum\left(y_{i}-\hat{y}_{i}^{C V}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}} \\
& =\text { proportion of reduction in error when using } \\
& \text { our current technique instead of } \bar{y} \text { based on CV }
\end{aligned}
$$

Note: $P R E_{C V}$ is used for continuous Y

The benefit is that the model the (9/10)ths of the data was fit on has no association with the $(1 / 10)$ th we left out. This gives a better measure of how our model may behave with "new" data.

Remark 10.1.1. CV can be useful in assessing competing "best" models in model selection in techniques or when trying to pick between various other techniques (such as using KNN)

10.1.4 Error for Categorical Y

When we use KNN with categorical Y we don't have a numeric \hat{y} and y to calculate $P R E_{C V}$. But, we do have an alternative... If we let $y=a_{1}, a_{2}, \ldots, a_{c}$ be the varying categories for y. Then, we have $\hat{y}=a_{i}$ where a_{i} is the category with the highest chance as the predicted category. The error matrix for our y predictions would then be:

Error Matrix (E)

	$\hat{y}=a_{1}$	\ldots	$\hat{y}=a_{c}$	
$y=a_{1}$	n_{11}	\ldots	$n_{1 c}$	$r_{1}=$ true total in category a_{1}
\vdots	\vdots	\ddots	\vdots	\vdots
$y=a_{c}$	$n_{c 1}$	\ldots	$n_{c c}$	$r_{c}=$ true total in category a_{c}
	c_{1}	\ldots	c_{c}	$\mathrm{n}=$ sample size
	pred. total in cat. a_{1}	\ldots	pred. total in cat. a_{c}	

Ideally, in the matrix above we would like the trace (diagonal sum) to be the largest (close to n). So, one measure of the overall error rate would be

$$
\text { Overall Error }=\frac{n-\operatorname{trace}(\boldsymbol{E})}{n}=\frac{n-\sum n_{i i}}{n}
$$

The overall rate (proportion) of correct predictions would then be: Correct $=1$ - (Overall Error). When $c=2$ (i.e. y has two categories or is binary), we often have more specific error rates.

10.1.5 Errors for Two Categories

For notation, we let $y=1$ mean subject has trait and $y=0$ mean subject does not have trait. The simplified error matrix is then:

	$\hat{y}=1$	$\hat{y}=0$
$y=1$	n_{11}	n_{12}
$y=0$	n_{21}	n_{22}

where the constraints are

$$
\begin{gathered}
n_{i j} \in\{0, \ldots, n\} \quad \forall i, j \in\{1,2\} \\
\sum_{i, j} n_{i j}=n
\end{gathered}
$$

i.e. everything sums up to sample size and each entry is no more than the sample size. We then further calculate:

1. Sensitivity $=P$ (pred. success|true success) $=P(\hat{y}=1 \mid y=1)=\left(n_{11}\right) /\left(n_{11}+n_{12}\right)$
2. Specificity $=P($ pred. fail|true fail $)=P(\hat{y}=0 \mid y=0)=\left(n_{22}\right) /\left(n_{21}+n_{22}\right)$
3. $P($ Correct $)=\left(n_{11}+n_{22}\right) / n$
4. $P($ Not Correct $)=1-P($ Correct $)$

Of course, since \hat{y} depends on K we would use CV and pick the lowest misclassification rate.

References

[1] Kornel (https://stats.stackexchange.com/users/91913/kornel). Why is the Kruskal Wallis test statistic approximately chi-square distributed? Cross Validated. (version: 2018-03-23). eprint: https://stats.stackexchange.com/q/336241. url: https://stats. stackexchange.com/q/336241.
[2] James Carpenter and John Bithell. "Bootstrap confidence intervals: when, which, what?" In: Statistics in Medicine 19.9 (2000), pp. 1141-1164. url: https://www.tau.ac.il/ ~saharon/Boot/10.1.1.133.8405.pdf.
[3] Chapter 14: Nonparametric Statistics. url: http://users.stat.ufl.edu/~winner/ sta3024/chapter14.pdf.
[4] Nian Shong Chok. "PEARSONS VERSUS SPEARMANS AND KENDALLS CORRELATION COEFFICIENTS FOR CONTINUOUS DATA". MA thesis. University of Pittsburgh, 2010. url: https://d-scholarship.pitt.edu/8056/1/Chokns_etd2010.pdf.
[5] Gregory Imholte. Better Bootstrap Confidence Intervals. 2012. url: https://faculty . washington.edu/heagerty/Courses/b572/public/GregImholte-1.pdf.
[6] Kendall rank correlation coefficient. url: https://en.wikipedia.org/wiki/Kendall_ rank_correlation_coefficient.
[7] Paul Kvam and Brani Vidakovic. "Nonparametric Statistics with Applications in Science and Engineering". In: chap. 7. url: http://zoe.bme.gatech.edu/~bv20/isye6404/ Bank/npmarginal.pdf.
[8] Eric W. Weisstein. Correlation Coefficient-Gaussian Bivariate Distribution. url: https : //sanweb.lib.msu.edu/crcmath/math/math/c/c703.htm.
[9] Steven J. Wilson. Confidence Intervals for Percentiles and Medians. url: http://www. milefoot.com/math/stat/ci-medians.htm.

[^0]: ${ }^{1}$ For a detailed proof of this, see the Appendix

[^1]: ${ }^{2}$ see the Appendix for proofs

[^2]: ${ }^{2}$ See the Appendix for how this relates to the WRS test.

[^3]: ${ }^{1}$ See the Appendix for a derivation

[^4]: ${ }^{1}$ See [4] for more information regarding power simulations

