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Chapter 0

∣∣∣∣∣ About/Usage

0.1 About this Book
These are some notes that were typeset by Ramneek Narayan after he completed STA104.
There are new additions such as theorems, definitions, appendices, references, and proofs.
These notes were created in an effort to make the material for the course more accessible
and reader friendly. I’m sure there are typos and if you spot any, let the writers know.

0.2 How to use this Book
This book was written with the student in mind and comes with colored environments to
make reading easier. In addition, at the end of each environment are symbols used conclude
the environment (show that it is completed); they are there for organization and for your ease
of reading. We list the environments below for clarity:

Example = Red Violet concludes with ’ª’

Remark = Teal concludes with ’�’

Definition = Lime Green concludes with ’♠’

Theorem = Royal Purple concludes with ’�’

Proposition = Mulberry concludes with ’�’

Note = Orange concludes with ’N’

Emphasis = Royal Blue concludes with ’F’

Read at your own pace and if anything doesn’t make sense, argue with the instructor! It
makes sense at the end sometimes. Other than that, the book is pretty straight forward to
read. We hope you enjoy reading it!
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Chapter 1

∣∣∣∣∣ Week 1: Introduction

1.1 Lecture 1: Overview
Non-parametric statistics uses techniques that do not require typical assumptions of traditional
techniques (so-called parametric statistics). To see why we still use nonparametric methods
in statistics today, consider a traditional text for a single mean. It has the following form:

H0 : µ = µ0 or H0 : µ ≤ µ0 or H0 : µ ≥ µ0 vs.

HA : µ 6= µ0 or HA : µ > µ0 or HA : µ < µ0

The test statistic normally used is the t-statistic ts = (x̄ − µ0)/(s/
√
n) with degrees of

freedom df = n − 1. Each respective HA has the following p-values:

2P (t > |ts |), P (t > ts), P (t < ts)

As always we use the same decision rule for making an inference:

1. If p-value < α, reject H0

2. If p-value ≥ α, fail to reject H0

When we conducted the t-test, what assumptions did we make and why?

Two assumptions that stand out are:

Assumptions of t-test

1. Random sample was taken, i.e. Xi ’s are all independent of each other

2. X̄ (the random variable (r.v.) denoting all possible sample means) is assumed to be
approximately normal, i.e. X̄ ∼ N(µX, σ

2
X/n). We know this because:

• n ≥ 30 (using the Central Limit Theorem) OR

• Population is normal
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F

We need these assumptions because:

Reasons for Assumptions

1. Random sampling allows us to simplify the formula for the variance of the sample mean
σ2
X̄
as σ2

X̄
= σ2

X/n since V (X̄) =
∑
V (Xi)/n

2 = V (X)/n assuming mutual independence.

2. Normality of X̄ lets us say t = (X̄ − µ0)/(S/
√
n) is tn−1 distributed, i.e. t ∼ tn−1. It

also in turn allows us to make confidence intervals (CIs) and hypothesis tests (HIs).

Note: We use this statistic because σX̄ is unknown. If it was known, then we
replace S with σX̄ in the test statistic t, giving t ∼ N(0, 1) here.

F

Notice, however, that the key part in making this test was that we assumed some test-statistic
had a known named distribution. Then, we used this distribution to find percentiles for CIs
and probabilities for p-values.

Sometimes this doesn’t happen when actually collect data.

To remedy this, we have non-parametric statistics. It addresses the issue that arises when
we do not have the assumptions we need to assume a named distribution. For this reason,
non-parametric statistics is often called "distribution free statistics."

1.1.1 What happens if assumptions are violated?
Typically, the assumption that is most often violated is whatever distribution we assumed
(typically a normal distribution). This makes the errors involved in HTs and CIs to grow really
fast.

Recall:

• α = P (Type I Error) = P (Reject H0|H0true)

• β = P (Type II Error) = P (Fail to reject H0|H0false)

• Power = 1− β = P (Reject H0|H0false)

N

A good measure of the accuracy of a hypothesis test is power; we are especially interested
in a test’s ability to detect a false null hypothesis since we usually have an intuition for
suspecting (creating) an alternative hypothesis (HA). Now, if the assumptions for distributions
hold, parametric tests will often have more power. However, when assumptions are violated,
non-parametric tests will have higher power.
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1.1.2 Common Parametric Tests
Some common tests you may be familiar with:

Well-known Parametric Tests

1. H0 : µ = µ0 (test for a single mean)

• Requires X̄ ∼ N(µX, σX/
√
n)

2. H0 : µ1 − µ2 = ∆0 (comparison of two means)

• Requires X̄1, X̄2 are independent and X̄i ∼ N(µi , σi/
√
n) for i ∈ {1, 2}

3. H0 : µ1 = µ2 = · · · = µI (ANOVA)

• Requires εi
i id∼ N(0, σ2

εi
) and I groups are mutually independent

4. H0 : βi = 0, assuming Yi = β0 + β1x1 + β2x2 + · · ·+ εi

• Requires εi
i id∼ N(0, σ2)

F

Each test has its own caveats and they are especially weakened when their assumptions do
not hold due to...

1. Outliers

2. Small sample sizes

3. Normal assumption violated

Fortunately, there are some solutions to these problems and we can

1. Remove outliers, where appropriate

2. Data transformations under non-normality

However, there are currently no known methods for small sample sizes and our "solutions"
above don’t always work. Hence prompting a need for non-parametric methods.

1.1.3 Broad Overview of Non-Parametrics
Here are some common non-parametric techniques:

Common Non-Parametric Methods

1. Binomial Based Tests: We assume something is distributed binomial, which is some-
what less strict that normal
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2. Permutation Tests: We randomize data among groups, and use a permutation distri-
bution distribution to form HT and CIs

3. Bootstrap Methods: Resample the data from itself with replacement to form a
bootstrap distribution to use for CIs and HTs.

4. "Modern"/Machine Learning Techniques: Primarily "K nearest neighbors", Regres-
sion/Classification Trees, and possibly Linear Discriminant Analysis (LDA)

F
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1.2 Lecture 2: HT/CIs for Median (Binomial Distribu-
tion)

The reason we often use the mean is because of the CLT, which tells us the mean is
approximately normal if a random sample was taken from a population with sample size greater
than 30 (n ≥ 30).

But, when we can’t assume this, the median is often just as good since it is also a measure of
central tendency. Before going into more detail, recall the definition of the median:

Definition 1.2.1 (Median). For continuous data, the median is is the value X(m) such that
≈ 50% of the data lies below it and ≈ 50% lies above it. I.e.,

P (X < X(m)) ≈ 0.50, P (X > X(m)) ≈ 0.50

♠

When we sample from a population, we compute what are known as sample medians, marked
as x j(m) for the j-th sample. If we were to plot a histogram of all these sample medians,
we would eventually arrive at the sampling distribution of the population median. The
random variable that describes this distribution is known as θm and our best bet as to what
the population median is known as the hypothesized median, denoted as θ◦m.

Now, stating H0 and HA in terms of θm and θ◦m yields the following hypotheses:

Hypotheses for Median HT

1. H0 : θm ≤ θ◦m vs. HA : θm > θ◦m

2. H0 : θm ≥ θ◦m vs. HA : θm < θ◦m

3. H0 : θm = θ◦m vs. HA : θm 6= θ◦m

F

We could also phrase the above hypotheses in terms of probabilities if we set p = P (Xi > θ◦m)

where Xi is any data point we sampled. Then the hypotheses become

H0 : p ≤ 0.5 vs. HA : p > 0.5,

for example.

Consider marking those observations that are above our predicted value of the median, we
can formalize this as:

B+
i =

{
1 if Xi > θ◦m

0 if Xi < θ◦m
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Immediately, we can see that B+
i ∼ Bernoulli since it consists of only two outcomes. Notice

that
∑

i B
+
i = # of Xi > θm. We will call this quantity B+.

If the null hypothesis H0 is true (we will use the equality sign to make computations easier for
the other two versions of the null hypothesis, so θm = θ◦m), then

B+ ∼ Bin(n, 1/2)

since it is a sum of Bernoulli trials.

Thus, our p-value, which is the probability of observing our sample data as or more extreme
if the H0 is true, is:

P-values for Median HT

1. If HA : θm > θ◦m ⇒ p-value = P (B+ ≤ b+)

2. If HA : θm < θ◦m ⇒ p-value = P (B+ ≤ b+)

3. If HA : θm 6= θ◦m ⇒ p-value = min{P (B+ ≥ b+), P (B+ ≤ b+)}

Where B+ ∼ Bin(n, 1/2) as before and b+ is the observed value of this r.v. from our
sample. F

As usual, reject H0 if p-value ≤ α. Notice, B+ is essentially the test statistic.

Notice that if H0 : θm < θ◦m is true, then P (B+ ≥ b+) should be at least 0.5. Similarly, if H0

is not true, we would expect P (B+ ≥ b+) to be less than 0.5. The other hypotheses reverse
the direction of the inequality or make P (B+ ≥ b+) exactly 0.5.

Example 1.2.1 (Midterm Scores). Suppose a sample of 12 students had the following midterm
I scores:

Scores : 55, 64, 65, 67, 67, 68, 69, 72, 73, 75, 80, 88

Suppose the hypothesis is the median is at least 70.

(a) State H0 and HA

• Solution: The claim is that θm ≥ 70, as such we will put it as a null hypothesis
and use our data to seek evidence to the contrary. Thus, the null and alternative
hypotheses are:

H0 : θm ≥ 70 HA : θm < 70

(b) Calculate the appropriate p-value

• Solution: Since HA : θm < 70, we define the p-value as P (B+ ≤ b+). In
this problem we have b+ = # of observations > 70 = 5. The p-value is then
P (B+ ≤ 5) = P (B+ = 5) + P (B+ = 4) + · · ·+ P (B+ = 0) ≈ 0.3872 (using R or
table of binomial probabilities).

(c) Interpret the p-value in terms of the problem
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• Solution: If the null hypothesis was true (θm ≥ 70), then the chance we would
observe our data or "more extreme" (less values greater than 70) is about 0.3872.

(d) State your conclusion in terms of the problem

• Solution: Since p-value < α, we fail to reject the null and conclude the median is
at least 70.

ª

Remark 1.2.1. This test only requires

1. A random sample was taken from a continuous distribution

Also note that if any Xi = θ◦m, then we usually remove these values (thereby reducing n) and
carry out the test.

�

1.2.1 Normal Approximation to Binomial Test
Now, with a reasonable sample size, we may assume (using the CLT) that

∑
B+
i ∼ N(np,

√
np(1− p)), where p = 1/2 under H0

So we can then make a test statistic using a Z (standard normal) distribution. Our hypotheses
stay exactly the same and for clarity we rewrite below:

Hypotheses under Normal Approximation

1. H0 : θm ≤ θ◦m vs. HA : θm > θ◦m

2. H0 : θm ≥ θ◦m vs. HA : θm < θ◦m

3. H0 : θm = θ◦m vs. HA : θm 6= θ◦m

F

Interestingly, the test statistic we calculate for all three types of tests remains the same:
S = B+. To have universal testing procedures, we normalize this accordingly to give final
form:

Z =
S − n(0.5)√
n(0.25)

assuming H0 is true

The p-values then follow upon geometric inspection of the standard normal curve:
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P-values Under Normal Approximation

1. HA : θm > θ◦m =⇒ p-value = P (Z > z)

2. HA : θm < θ◦m =⇒ p-value = P (Z < z)

3. HA : θm 6= θ◦m =⇒ p-value = P (|Z| > z) = 2P (Z > |z |)

F

Example 1.2.2 (Midterm Scores Cont.). Let’s use the normal approximation on the same
problem. The hypotheses are:

H0 : θm ≥ 70 HA : θm < 70

and the observed value of the test statistic is b+ = 5. In this problem then, n = 12 and
s = 5. Computing the z-statistic is then:

z =
5− (12)(0.5)√

(12)(0.25)
=
−1√

3
≈ −0.577

We then end up with a p-value of

P (Z < −0.577) = 0.2810

Again, we fail to reject H0 since α = 0.05 which matches the binomial test. ª

In order to conduct this test we assume:

1. Random sample was taken

2. At least 5 observations are above and below the hypothesized value of the median
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1.3 Lecture 3: Median CIs and Percentiles/C.D.F.s

1.3.1 Confidence Intervals for the Median
The sample median is what’s known as an order statistic, it is a certain spot on an ordered
set of data. More formally, we define order statistics as follows:

Definition 1.3.1 (Order Statistics). Given a random sample of data X1, X2, ..., Xn, we may
reorder the values from greatest to least yielding a permuted data set X(1), X(2), ..., X(n) where
we read X(i) as the i-th highest data entry. The entries X(i) are then called order statistics.
Notice that X(1) = minimum Xi and X(n) = maximum Xi . ♠

In order to construct CIs for a true population parameter, we somehow isolate the parameter of
interest as we do with the sample mean X̄ yielding µ ∈ [α, β] with some degree of confidence.
For the population median, however, this method of isolation called pivoting is not necessary.
We can instead make some progress by considering the nature of the population median θm.
Clearly, by definition, if we order our data, then each point has a 50% chance of lying above
this median. If we further describe our data using order statistics X(1), X(2), ..., X(n), then we
arrive at the following theorem adapted from [9]

Theorem 1.3.1 (Median CI). For any distribution free sample the population median is
approximately bounded above and below the order statistics X(i) and X(j−1) by degree of
confidence

∑j−1
k=i

(
n
k

)
(1/2)n. That is:

P (X(i) ≤ θm ≤ X(j−1)) ≈
j−1∑
k=i

(
n

k

)
(1/2)n

Proof. We begin with a simple case, that is, solving for the following probability:

P (X(k) ≤ θm ≤ X(k+1)) (1.3.1)

which is the chance of the true median landing within any two adjacent order statistics. We
will now rewrite equation (1.3.1) using conjunctions and simplify using the law of multiplication
for events:

P (X(k) ≤ θm & θm ≤ X(k+1)) = P (X(k) ≤ θm|θm ≤ X(k+1))P (θm ≤ X(k+1)) = P (E1|E2)P (E2)

(1.3.2)

Now, if we know E2 happened, the chance for the order statistic Immediately before it to be
below θm does not change as it is still possible for X(k) to fall on either side of the relation
between it and θm (we don’t know what value X(k+1) actually takes, just that it’s greater than
θm), so the simplification is
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P (E1)P (E2) = P (X(k) ≤ θm)P (θm ≤ X(k+1)) (1.3.3)

If X(k) ≤ θm, then X(1), X(2), ..., X(k) ≤ θm and similarly if X(k+1) ≥ θm, then
X(k+1), X(k+2), ..., X(n) ≥ θm. Again, each order statistic has a 50% chance of being ex-
clusively greater or less than θm so

P (X(i) ≤ θm) = 1/2 P (X(j) ≥ θm) = 1/2

The last bit of information we need to simplify (1.3.3) is the fact the actual sample values of
any order statistic are unknown (in shorthand: X(i) could be Xα where α ∈ {1, ..., n}), so we
must take into account all combinations of data points which is

(
n
k

)
. Thus,

P (X(k) ≤ θm ≤ X(k+1)) =

(
n

k

)
(1/2)k(1/2)n−k =

(
n

k

)
(1/2)n

To generalize this probability in order to attain a higher confidence level, we need to find

P (X(i) ≤ θm ≤ X(j))

for any i < j . Notice that when X(i) ≤ θm ≤ X(j) a direct implication is that [X(i) ≤ θm ≤
X(i+1)] ⊕ [X(i+1) ≤ θm ≤ X(i+2)] ⊕ . . . ⊕ [X(j−1) ≤ θm ≤ X(j)]. These events are all disjoint
since the bounds do not intersect.

The probability then becomes

P (X(i) ≤ θm ≤ X(j)) =

j−1∑
k=i

P (X(k) ≤ θm ≤ X(k+1))

=

j−1∑
k=i

(
n

k

)
(1/2)k(1/2)n−k =

j−1∑
k=i

(
n

k

)
(1/2)n

Naturally, it follows that since P (θm = X(j)) = 0 (we draw from a continuous population) we
have

P (X(i) ≤ θm ≤ X(j−1)) ≈
j−1∑
k=i

(
n

k

)
(1/2)n

as we sought to show.

�

This theorem allows us to make CIs based on the binomial distribution as well as those using
a normal approximation to the binomial.
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CIs for Median

(i) Based on the Binomial Distribution

• For a CI, we want a roughly symmetric interval where

P (a < θm < b − 1) = 1− α

for some lower bound a, and upper bound (b − 1).

Note: Because the binomial distribution is discrete, the lower bound is a and the
upper bound is (b − 1) to adjust for the discrete nature of the data. Consider,
X ∼ Bin(n, 1/2), then P (X > a) 6= P (X ≥ a).

This CI computation to find a and (b − 1) is typically done via computer, and the
bounds are found as locations where

b−1∑
k=a

(
n

k

)
(0.5)n ≈ 1− α (see Median CI)

where the computer starts with

– a = first location below median

– b = first location above median

and works outwards from there. At the end, it uses the ordered data point X(i)

in the (ath) and (b − 1th) location. In a sentence, the CI states there is a
(1 − α)100% chance of the true population median begin contained by the
ath and b − 1th order statistic.

(ii) Using the Normal Approximation to the Binomial

• Now, we still want P (a < θm < b − 1) = 1 − α, i.e. P (θm < a) = α/2 and
P (θm > b − 1) = α/2. Notice the the statement for the binomial case is about
collecting areas from a binomial variate X ∼ Bin(n, 1/2). We can approximate this
binomial variate using a normal curve yielding a ≈ −z1−α/2

√
V (X) + E(X) and

b − 1 ≈ z1−α/2

√
V (X) + E(X). The locations of the bounds then become

a = lower bound location = −z1−α/2(
√

0.25n) + 0.5n

b = upper bound location = z1−α/2(
√

0.25n) + 0.5n + 1

rounded to the nearest integer.

Note: z1−α/2 is the (1−α/2)100% percentile of the Z (standard normal) distribu-
tion.
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F

Example 1.3.1 (Height Data). Suppose we had the following data on height:

Height: 48, 48, 50, 52, 54, 54, 55, 56, 56, 57, 57, 57, 58, 58, 59, 60, 62, 62, 63, 71

(a) Find the 95% CI for the median using the normal approximation to the binomial.

• Solution: We use the same form as found out for the locations only set n = 20:

lower bound location = a = −1.96(
√

0.25(20)) + 5(20) ≈ 5.617 ≈ 6

upper bound location = b = +1.96(
√

0.25(20)) + 5(20) + 1 ≈ 15.3826 ≈ 15

So the CI will be (X(6), X(15)) or (54, 59) with degree of confidence 95%.

(b) Does your interval suggest that the median is above 56?

• Solution: While there are values that are above 56 in the CI (e.g. 58), there are
also values less than 56 (e.g. 55). We can only have valid evidence for θm > 56

if and only if all points in the CI are above 56. In short, no, both bounds are not
over 56.

(c) Interpret the CI in terms of the problem.

• Solution: We are 95% confident that the true median is between 54 and 59
inches.

Note: Some computer programs will extrapolate to an approximate value for a decimal
location. This isn’t a problem, just round the bounds to make sure the answer makes sense
(i.e. the bounds are part of the data set given). ª

1.3.2 Estimating Percentiles and C.D.F.s

Recall: The Cumulative Distribution Function or C.D.F (F ) for discrete data is defined to be

F (x) =

x∑
t=min{X}

P (X = t) = P (X ≤ x)

N

The empirical CDF F̂ is an estimate of F(x) where

F̂ (x) ≡ (# of xi ≤ x)/n
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Example 1.3.2 (Height Data cont.). Here’s a reproduction of the data:

Height: 48, 48, 50, 52, 54, 54, 55, 56, 56, 57, 57, 57, 58, 58, 59, 60, 62, 62, 63, 71

Given the data we have, we can construct an empirical C.D.F. For a single data point, say
48, we know that there are exactly 2 numbers that are below or equal to 48. So, F̂ (48) = 2.
The rest of the points are calculated below in a table:

x 48 50 52 54 55 56 57 58 59 60 62 63 71
F̂ (x) 2/20 3/20 4/20 6/20 7/20 8/20 12/20 14/20 15/20 16/20 18/20 19/20 20/20

ª

As a random variable F̂ (x) for a given value of x follows a binomial distribution divided by the
sample size n. This is because we can write F̂ (x) as

F̂ (x) =
1(Xi < x)

n
=

∑n
i Yi
n

where each Yi is a bernoulli trial indicating whether the data point is below x or not. We
have E(Yi) = F (x) since F (x) is the true value of proportion of data below x . Thus
F̂ (x) is an average of bernoulii trials or F̂ (x) ∼ Bin(n)/n and E(F̂ (x)) = F (x), V (x) =

(F (x)(1− F (x)))/n.

If the sample size is large enough, then we can use the CLT to approximate the this distribution
and give

F̂ (x) ∼ N(F (x),
√

(F (x)(1− F (x)))/n)

Since F̂ (x) and F (x) are proportions, we can see them as p̂ and p respectively. The form of
the above statement is then

p̂ ∼ N(p,
√

(p(1− p))/n)

if one prefers.

With this approximation we also have (1− α)100% CI for F (x):

F̂ (x)± z1−α/2

√
F̂ (x)(1− F̂ (x))/n

Example 1.3.3 (Height Data cont.). Find a 95% CI for the C.D.F. at x = 60

• Solution: Looking at the CDF table, we see F̂ (60) = 16/20 = 0.8. The Z quantile for
a 95% CI is also z0.975 = 1.96. This then makes the CI
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95% CI: 0.8± 1.96
√

0.8(0.2)/20 =⇒ (0.624, 0.975)

Thus we estimate that x = 60 could be anything from the 62.4th and 97.5th percentile. ª

Note: Ideally For a CDF F(x) we would have at least 5 values above and below. But this
may not happen for values of x that are close to the Min or Max. N
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Chapter 2

∣∣∣∣∣ Week 2: 2-Sample Tests

2.1 Lecture 4: CIs for Percentiles & Permutation Tests

2.1.1 Confidence Intervals For Percentiles
The CI for a median can be easily modified to be a CI for any percentile. Recall the CI for the
median using the normal approximation for the binomial was

a = lower bound location = −z1−α/2

(√
0.25n

)
+ 0.5n

b = upper bound location = z1−α/2

(√
0.25n

)
+ 0.5n + 1

We note that 0.5n = E(X) and
√

0.25n =
√
V (X). When we no longer speak of the median

but rather any percentile p∗β ∀β ∈ [0, 1] we have E(p∗β) = nβ and
√
V (p∗β) =

√
p∗β(1− p∗β)n.

A very similar result for p∗β’s confidence interval can thus be obtained and A (1− α) 100% CI
for the (p∗β) 100th percentile is:

lower bound location: − z1−α/2

(√
p∗β(1− p∗β)n

)
+ nβ

upper bound location: z1−α/2

(√
p∗β(1− p∗β)n

)
+ nβ + 1

These confidence intervals are functions of confidence level, percentile, and sample size.
For shorthand, CI = CI(α, β, n). N

Example 2.1.1. If n = 30 and find a 99% CI for the 25th percentile.

• Solution: We have α = 1, β = .25, n = 30. Thus, the locations would be:

lower bound location: − 2.575(
√
.25(.75)30) + 30(0.25) ≈ 1.393 =⇒ 1st
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upper bound location: 2.575(
√
.25(.75)30) + 30(0.25) + 1 ≈ 14.607 =⇒ 14th

So the ordered values in the 1st and 14th spot are X(1) and X(14).

ª

Note: It is possible for you to round a location to 0 or to n + 1. In this case, use 1 or n
instead. N

2.1.2 Comparing two Means
The goal is typically to determine if two means are statistically different (i.e. if µ1 6= µ2 by
data we collect). The typical assumptions for the parametric test are

1. Random sample from both groups

2. Groups are independent

3. X̄1 and X̄2 are normal, either through...

(i) ni ≥ 30 ∀i ∈ {1, 2} (CLT)

(ii) Both populations normal

2.1.3 Permutation Test for Two Groups
The idea behind most permutation tests is that we assume that the distribution of the two
groups is identical. If that were true each observation should be equally likely to come from
either group. Then, we create all possible two group samples possible (ideally). Sometimes
data sets are very large so all possible permutations take up more computing resources and
we cannot use non-parametric methods. Just a caveat.

Example 2.1.2 (Small Group Permutation). Suppose our two samples are:

Group 1: 2, 4, 6

Group 2: 5, 7, 9

Clearly with this sample there is an observed difference of the sample means. We reference
this idea with Dobs such that Dobs = x̄1 − x̄2. If we then set Di = difference in means for
ith permutation we can then compute and organize all of the differences when we permute.
Now, let’s assemble all possible groups we could have had:
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Group 1 Group 2 Di = x̄1 − x̄2

(2, 4, 6) (5, 7, 9) 4 - 7 = 3
(2, 4, 5) (6, 7, 9) 3.67 - 7.33 = -3.66
(2, 4, 7) (5, 6, 9) 4.33 - 6.67 = -2.34
(2, 4, 9) (5, 7, 6) 5 - 6 = -1
(5, 4, 6) (2, 7, 9) 5 - 6 = -1
(7, 4, 6) (5, 2, 9) 5.67 - 5.33 = 0.34
(9, 4, 6) (5, 7, 2) 6.33 - 4.67 = 1.66
(2, 5, 6) (4, 7, 9) 4.33 - 6.67 = -2.34
(2, 7, 6) (5, 4, 9) 5 - 6 = -1
(2, 9, 6) (5, 7, 4) 5.67 - 5.33 = 0.34
(2, 5, 7) (4, 6, 9) 4.67 - 6.33 = -1.66
(2, 5, 9) (4, 6, 7) 5.33 - 5.67 = -0.34
(2, 7, 9) (4, 6, 5) 6 - 5 = 1
(4, 5, 7) (2, 6, 9) 5.33 - 5.67 = -0.34
(4, 5, 9) (2, 6, 7) 6 - 5 = 1
(4, 7, 9) (2, 6, 5) 4.33 - 6.67 = -2.34
(6, 7, 9) (2, 4, 5) 7.33 - 3.67 = 3.66
(6, 5, 9) (2, 4, 7) 6.67 - 4.33 = 2.34
(6, 5, 7) (2, 4, 9) 6 - 5 = 1
(5, 7, 9) (2, 4, 6) 7 - 4 = 3

Notice that we only care about the difference of the means; we do not care about the order
of the observations in the groups (2, 4, 6 has same effect as 6, 4, 2 as far as our tests are
concerned).

Now, using the above we can create the empirical discrete distribution of possible differ-
ences in means:

Di -3.66 -3 -2.34 -1.66 -1 -0.34 0.34 1 1.66 2.34 3 3.66
Freq 1/20 1/20 2/20 1/20 3/20 2/20 2/20 3/20 1/20 2/20 1/20 1/20

Now, the observed mean difference is Dobs = −3. If we are considering "extreme" to be as
or more negative, we then have:

p-value: If all observations are equally likely to be in either group (the distributions are equal),
then we would observe our data or more extreme with probability 2/20. ª

Note: Permutation tests are usually done in R (hard to do by hand; too many permutations).
N

Procedure for Conducting Permutation Tests

Notice that we had to assume the distributions are the same. This would mean the means,
standard deviations, minimums, maximums, etc... are all equal between groups. This is in
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effect the null hypothesis. In order to conduct a permutation hypothesis test we follow the
following steps:

Permutation HT Steps

Step 1: State H0 and HA

• Let F1(x) = CDF for group 1 and F2(x) = CDF for group 2. Assuming the
distributions for both groups are the same, it must be the case that F1(x) = F2(x)

for all x in the data’s domain. Thus, possible hypotheses are

H0 HA

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) (µ1 ≥ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≥ F2(x) (µ1 ≤ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2)

Where the inequality is valid for at least one x in every alternate hypothesis.

Notice that1

– F1(x) ≤ F2(x) or F1(x) ≥ F2(x) =⇒ Distributions are different

– F1(x) ≤ F2(x) =⇒ Group 1 tends to be larger than Group 2, i.e. (E(X1) >

E(X2))

– F1(x) ≥ F2(x) =⇒ Group 2 tends to be larger than Group 1, i.e. (E(X1) <

E(X2))

Step 2: Calculate the observed statistic and all permutations.

• The observed statistic could be any number of things such as: Dobs = x̄1−x̄2, Dobs =

total1−total2, or Dobs = median1−median2. If we set m = sample size of group 1
and n = sample size of group 2, then there are(

m + n

m

)
=

(
m + n

n

)
=

(m + n)!

m!n!

total possible permutations.

1For a detailed proof of this, see the Appendix
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Step 3: Calculate the permutation p-value. For each hypothesis, the p-value is:

Alternate Hyp. p-value

HA : F1(x) ≤ F2(x) (# of Di ≥ Dobs)/
(
m+n
n

)
HA : F1(x) ≥ F2(x) (# of Di ≤ Dobs)/

(
m+n
n

)
HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (# of |Di | ≥ |Dobs|)/

(
m+n
n

)
Step 4: Reject H0 if p-value ≤ α

F

Note: Typically when we have asymmetric distributions, we use the median to compare
outliers. When we have a roughly symmetric distribution, we use the total or mean. So, the
choice of Dobs does not always have to involve the mean. N
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2.2 Lecture 5: Permutation Tests (cont.) &WRS Test

2.2.1 Approximate Permutation Test
When the sample sizes get moderately large, all permutations can be difficult to calculate
(or code). When this happens, instead of calculating literally all permutations we randomly
generate permutations. For example, if n = m = 10, then

(
n+m
n

)
=
(

20
10

)
= 184, 756 total

permuted groups. This would take a computer some time to make all of the permutations
and certainly for us even longer. Hence, the need to randomly generate these permutations.

Note: Randomly generating permutations will give an approximate p-value rather than the
true permutation p-value. This thus makes it a random variable and subject to error. More
permutations usually minimize this error. N

The steps for an approximate permutation test are given below:

Steps for an Approximate Permutation Test (for coding):

1. Record Dobs

2. Create one vector of all observations, ~q

3. Randomly shuffle the (m + n) observations, and assign first m to group 1 last n to
group 2

4. Compute Di = observed difference in (means/medians/totals)

5. Repeat steps 3 & 4 R > 2000 times

6. Based on these R random values of Di , we have an approximate permutation distribution.
Thus, our approximate p-values are:

Alternate Hyp. p-value

HA : F1(x) ≤ F2(x) (# of Di ≥ Dobs)/R

HA : F1(x) ≥ F2(x) (# of Di ≤ Dobs)/R

HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (# of |Di | ≥ |Dobs|)/R

7. If p-value < α, then reject H0

F

Remark 2.2.1. You will get code that I have made and you can modify it as needed. �
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2.2.2 Confidence Interval for P-value
Since we are finding an approximate p-value which is a random quantity, we may want to
estimate the p-value further. Notice that the calculated p-value p̃ in all cases has the form:

p̃ =

∑R
i 1(ϕ(Di)� ϕ(Dobs))

R
� ∈ {≥,≤}

for some transformation ϕ. As such, we can view p̃ as the sum of R Bernoulli trials where
the chance of success is the true p-value (think of each indication as ’1’ being this is as
or more extreme, the true chance of as or more extreme is set as p∗, so each summand
∼ Bernoulii(p∗)). It then follows that

p̃ ∼
Bin(R, p∗)

R

Then, a (1− α)100% CI for a p-value p∗ is

CI for permutation p-value

p∗ ± z1−α/2

√
p∗(1− p∗)/R

F

Example 2.2.1 (Theoretical CI). Suppose based on R = 2000 random permutations the
approximate permutation p-value was 0.0432. Find the 90% approximate p-value.

• Solution: The 90% CI for our approximate p-value is

0.04321± 1.645
√

0.0432(1− 0.432)/2000 =⇒ (0.0357, 0.0507)

ª

2.2.3 Normal Approximation To Permutations
When we use a normal approximation to permutations we again assume that both groups
come from the same population. To perform hypothesis tests, we use the overall mean x̄∗

and overall standard deviation s∗ in our test statistic. Since both groups are from the same
population (under H0), X̄∗ → µ∗ and S∗/

√
m → σ∗

X̄∗
as more equal size samples are taken.

Remark 2.2.2. For this test we need m + n ≥ 30 �

The steps to conduct the hypothesis test using the permutation normal approximation are
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Permutation Normal Approximation HT

Step 1: State H0 and HA

• A table for all cases is given below:

H0 HA

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) (µ1 ≥ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≥ F2(x) (µ1 ≤ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2)

Step 2: Our test statistic

Z =
X̄1 − x̄∗

s∗/
√
m
∼ N(0, 1) (approx.)

Step 3: Calculate the p-value

• A table for each alternate hypothesis p-value is given

HA p-value

HA : F1(x) ≤ F2(x) (µ1 ≥ µ2) P (Z > z)

HA : F1(x) ≥ F2(x) (µ1 ≤ µ2) P (Z < z)

HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2) 2P (Z > |z |)

Step 4: If p-value < α, reject H0

F

2.2.4 Wilcoxon Rank Sum (WRS) Test
A different approach to the same problem (difference between two groups) is instead of using
the actual data values, to use the ranks of the data values instead. The main way this works
is if one group has larger observations than the other, in general it will also have larger ranks
than the other. Ranks are directly proportional to the values of the data, lower data
points, lower ranks and vice versa. Before we begin further, let’s define specifically what a
rank is:

Definition 2.2.1 (Rank). The rank of any data point xi with m + n entries is

R(xi) =

m+n∑
j=1

1(xj ≤ xi)
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If any points have the same point value (not rank), then we take the average of their ranks
and assign these numbers this rank. For example, if xi = xj but R(xi) 6= R(xj) upon first
assignment, then R(xi) = (R(xi) + R(xj))/2 and R(xj) = (R(xi) + R(xj))/2

♠

Remark 2.2.3. Remark: (WRS) tends to outperform permutation tests in certain situations
which we will discuss later. �

In order to conduct the test we follow these steps:

WRS HT Steps

Step 1: State the hypotheses (they remain the same as with permutation tests since we are
after the same inference)

• The hypotheses are reproduced below

H0 HA

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) (µ1 ≥ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≥ F2(x) (µ1 ≤ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2)

Step 2: Our test statistic requires the following steps:

(a) Combine the (m + n) values into one group/vector: ~q

(b) Calculate the rank for each data point

(c) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test
statistic,

Wobs =
∑

group 1

R(xi)

Step 3: To find The exact p-value you would calculate all
(
m+n
n

)
permutations of the two

groups and calculate the distribution of

Wi = sum of ranks in group 1

Then,
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Alternate Hyp. p-value

HA : F1(x) ≤ F2(x) (# of Wi ≥ Wobs)/
(
n+m
n

)
HA : F1(x) ≥ F2(x) (# of Wi ≤ W obs)/

(
n+m
n

)
HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) 2 min{both one-sided p-values}

Step 4: If p-value < α, then reject H0

F

Note: WRS tends to have higher power when the distribution is skewed and outliers are
present since assigning ranks essentially removes all influence of both issues.

Permutation tests, however, tend to have higher power when the distribution is thought to be
symmetric and when using the mean as a measure of central tendency. N
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2.3 Lecture 6: WRS (cont.) & Approximations
Let’s see the WRS test in an example:

Example 2.3.1 (Exam Scores). Suppose that exam scores for math majors and computer
science majors in a statistics course were:

Math: 80, 85

Computer Science: 75, 80, 90

Assume we want to test if the groups means are different, i.e. µmath 6= µcomp.

(a) State H0 and HA

• Solution: Since this test is about mean inequality (no knowledge about which
direction the inequality is), the null and alternative are

H0 : F1(x) = F2(x)

HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x)

(b) Calculate all possible values of the rank sums for Group 1.

• Solution: A table giving the data, ordinal ranks, and adjusted ranks (one we use
for test) is given below:

Observations: 75 80 80 85 90

Ordinal Ranks (R’): 1 2 3 4 5

R(xi) : 1 2.5 2.5 4 5

The number of permutations is the number of ways we can group data into group
1 (math group):

(
5
2

)
= 10. Looking at the ordinal ranks, we can list all possible

ranks for group 1 as follows

R′ Group 1: (1, 2) (1, 3) (1, 4) (1, 5) (2, 4)

R′ (cont.): (3, 4) (2, 5) (3, 5) (4, 5) (2, 3)

If we define a mapping ψ : R′ → R such that (for example) ψ(2) = 2.5, we can
get the WRS rank permutations and associated rank sums (Wi):
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R(xi) Wi R(xi) (cont.) Wi

(1, 2.5) 3.5 (2.5, 4) 6.5

(1, 2.5) 3.5 (2.5, 5) 7.5

(1, 4) 5 (2.5, 5) 7.5

(1, 5) 6 (4, 5) 9

(2.5, 4) 6.5 (2.5, 2.5) 5

(c) Calculate the WRS test statistic and the appropriate p-value

• Solution:
Wobs = 6.5

p-value: 2(#Wi ≥ Wobs = 6.5)/10 = 2(5)/10 = 1 > α = 0.05

(d) State your conclusion in terms of the problem.

• Solution: We fail to reject H0 and conclude we may support that the distributions
(or means, medians) are similar.

ª

Remark 2.3.1. As with most hypothesis tests the smaller the sample the more difficult it
will be to reject the null (the measure of central tendencies are equal). This is because of
the high variability of small samples. Small samples also have ranks that reveal no actual
information about the degree the values observed are from each other, so even if the values
are extremely high, we still fail to reject the null. For example, suppose the data looked like:

Math: 20, 30

Computer Science: 10, 20, 100

we will have the same test result as before (ranks the same). Notice this test takes away the
effect of outliers whilst keeping the sample size the same. As always, it is easier to make
an inference with more data. Then the distribution of the ranks is apparent. �

2.3.1 Large Sample Approximation to WRS
The WRS test can be approximated with large enough sample sizes. Before discussing it, let’s
introduce some notation. Let

N = m + n, and R(x1), ..., R(xN) be the corresponding combined ranks of the two groups
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Also, let S1 = sum of ranks for group 1.

Under the assumption that the distributions are equal every rank R(xi) should have been
equally likely to come from both groups. If we haven’t observed the data yet, then R(xi) are
random variables with their own expectations and variances. It is as if we are drawing numbers
{1, 2, ..., N} from a bag without replacement, then adjusting for the rank for our tests.

It can be shown that2

Facts about Rank Sums
E(S1) = mµR =

m(N + 1)

2

σ2
S = V (S1) =

mnσ2
R

N − 1

where µR = 1
N

∑
i R(xi) and σ2

R = 1
N

∑
i(R(xi)− µR)2 Then, if N ≥ 30, we have

S1 ∼ N
(
mµR,

mnσ2
R

N − 1

)
Note: if there are no ties, then

σ2
R =

mn(N + 1)

2

F

To conduct a hypothesis test using this approximation, we follow these steps:

WRS Normal Approximation HT Steps

Step 1: State the null and alternative. For each different experimental setup we have:

H0 HA

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x)

H0 : F1(x) = F2(x) HA : F1(x) ≥ F2(x)

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x)

Step 2: Our test statistic is

Z =
(S1)obs −mµR

σR

Step 3: Calculate the p-value, this follows the same form as with normal approximation to
the permutation test.

• A table for each alternate hypothesis p-value is given

2see the Appendix for proofs
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HA p-value

HA : F1(x) ≤ F2(x) (µ1 ≥ µ2) P (Z > z)

HA : F1(x) ≥ F2(x) (µ1 ≤ µ2) P (Z < z)

HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2) 2P (Z > |z |)

Step 4: If p-value < α, reject H0

F

Example 2.3.2 (Grad Exam Scores). Two years of graduate students exam scores for the
pre qualifying exam were compared and the data is as follows:

Mean Rank Std. Dev of Rank Sample Size

Year 1 (Group 1) 14.86 8.480 15

Year 2 (Group 2) 16.13 8.771 15

Overall 15.5 8.630 30

The department believes year 2 scored significantly higher than year 1. Perform a hy-
pothesis test to find out if this is plausible.

(a) State H0 and HA

• Solution: H0 : Fyr 1(x) = Fyr 2(x) and HA : Fyr 1(x) ≥ Fyr 2(x) (µyr 1 < µyr 2)

(b) Calculate the appropriate test statistic and p-value using the large sample approximation

• Solution: The quantities we need in order to compute the Z statistic are the rank
sum (S1)obs, mean of rank sum E(S1), and standard deviation of rank sum σS.
We compute them below:

µS = mµR = (15)(15.5) = 232.5

σ2
S = mnσ2

R/(N − 1) = (15)(15)(8.6302)/(30− 1) ≈ 577.838

=⇒ σS ≈
√

577.838 ≈ 24.0383

Hence,

Wobs =

(
mean =

1

m

∑
R(xi)

)
(sample size = m) = (14.86)(15) ≈ 222.9

=⇒ Z = (222.9− 232.5)/24.0383 = −0.399

=⇒ p-value = P (Z < −0.399) ≈ 0.3449
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(c) State your decision in terms of the problem

• Solution: Since p-value > α fail to reject H0. We cannot conclude that there is
a significant difference in the scores for the two years.

Note: when the p-value is very large or very small we do not need to specify α =

0.10, 0.05, 0.01 ª

Now, there is no immediate CI that is associated with WRS. So, we can’t tell how large
(extreme) a difference between population means are. But, there is another technique that
has equivalent results for the HT and also has a CI with it.

This is the Mann Whitney (MW) test. It has a very different structure but will yield the same
results as the WRS, albeit with different assumptions.

As far as which to use either one, but MW has a natural extension to CIs so we can get more
information about the groups should the null be false.
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2.4 Appendix (Week 2)
We now prove stochastic dominance of one CDF over another implies the same relation
with respect to the population means of the two distributions. In other words, we show
F1(x) ≤ F2(x) ⇒ E(X1) > E(X2) and F1(x) ≥ F2(x) ⇒ E(X1) < E(X2) assuming the
inequality holds for all x . We show a proof using continuous density functions as the underlying
distributions are assumed to be continuous. All credit for this proof goes to Shitong Wei who
introduced me to it during discussion in college.

Theorem 2.4.1 (Stochastic Dominance). For continuous random variables X1 and X2

1. F1(x) ≤ F2(x)⇒ E(X1) > E(X2)

2. F1(x) ≥ F2(x)⇒ E(X1) < E(X2)

Proof. We prove the case (1), but case (2) is shown by permutation of inequality symbols.
Suppose there is a number γ such that F1(x) ≤ F2(x) for all x ∈ [γ,∞). Then, we have

∫ c

−∞
F1(x)dx ≤

∫ c

−∞
F2(x)dx (2.4.1)

for all c ∈ [γ,∞). Using the definition of the CDF for any random variable we simultaneously
have

Fj(x) =

∫ x

−∞
fj(t)dt ∀j ∈ {1, 2} (2.4.2)

This lets us rewrite equation (2.4.2) as

∫ c

−∞

∫ x

−∞
f1(t)dtdx ≤

∫ c

−∞

∫ x

−∞
f2(t)dtdx. (2.4.3)

Now, the region R = (−∞, c)× (−∞, x) looks like a triangle made from a the upper left
part of a square (we treat (−∞,∞) like a point, it’s the bottom left corner of the square
S = (−∞, c)×(−∞, c)). This allows us to make the change of variables we would normally do
for triangles in calculus. Thus we can write the region of integration as R = (−∞, c)× (t, c)

and equation (2.4.3) becomes

∫ c

−∞

∫ c

t

f1(t)dxdt ≤
∫ c

−∞

∫ c

t

f2(t)dxdt (2.4.4)

Evaluating the integrals (the first is free of x so we can just take the difference of the upper
and lower limits) we arrive at:
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∫ c

−∞
(c − t)f1(t)dt ≤

∫ c

−∞
(c − t)f2(t)dt (2.4.5)

which simplifies to:

∫ c

−∞
cf1(t)dt −

∫ c

−∞
tf1(t)dt ≤

∫ c

−∞
cf2(t)dt −

∫ c

−∞
tf2(t)dt (2.4.6)

At this point (2.4.6) is valid for all real numbers c , and we will apply a limit to c to the infinite
on both sides. Clearly,

lim
c→∞

∫ c

−∞
cfj(t)dt =∞ ∀j ∈ {1, 2} (2.4.7)

But what’s interesting is that the evaluation is the same number for both f1 and f2 since
they both have area 1 under their curves over infinity (take the ratio between the equations
described by (2.4.7) and see that they evaluate to 1; same number over infinity). So, we can
(as c →∞) remove both from the equality when we take the limit. This leaves the limit as

−
∫ ∞
−∞

tf1(t)dt ≤ −
∫ ∞
−∞

tf2(t)dt (2.4.8)

which can be simplified into

∫ ∞
−∞

tf1(t)dt ≥
∫ ∞
−∞

tf2(t)dt (2.4.9)

and by the definition of expected value this is equivalent to saying

E(X1) ≥ E(X2) (2.4.10)

as we sought to show. This concludes the proof.

�

We will now prove some properties of ranks and S1 using the adjusted ranks, i.e. R(xi) =

ψ(R′(xi)) = ψ(ordinal rank). Keep in mind though the theorems are much easier to prove
using ordinal ranks (set ψ(R′(xi)) = R(xi)).

Theorem 2.4.2 (Mean of Rank Sums). We have

E(S1) = mµR

where µR is the average of the ranks, i.e. µR = (N + 1)/2.
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Proof. The expectation is linear, so we don’t worry about rank dependence:

E(S1) = E

( ∑
group 1

ψ(R′(xi))

)
=
∑

group 1

E(ψ(R′(xi))) = mµR

Now µR = 1
N

∑
i ψ(R′(xi)) = (1 + 2 + · · ·+N)/N = (N+ 1)/2. Note that the sum of adjusted

ranks always equals the sum of the ordinals used to make the adjusted rank. This makes the
form of the mean sound. �

Theorem 2.4.3 (Rank Covariance). The covariance between any two adjusted ranks
ψ(R′(xi)), ψ(R′(xj)) is:

Cov(ψ(R′(xi)), R′(xj))) = −
σ2
R

N − 1

Proof. Note: for shorthand, we use ψ(R′(xi)) as ψ(R′i). We use the definition of covariance
to yield

Cov(ψ(R′i), ψ(R′j)) = E(ψ(R′i)ψ(R′j))− E(ψ(R′i))E(ψ(R′j)) (2.4.11)

Now, the average rank is always the same regardless of the specific rank in question so the
product of the expectations is:

E(ψ(R′i))E(ψ(R′j)) =

(
N + 1

2

)2

= [E(ψ(R′i))]2 (2.4.12)

Now we work on the other part of (2.4.11), by the law of total expectation we



2.4. APPENDIX (WEEK 2) 36

have:

E[ψ(R′i)ψ(R′j)] =
∑
k

E[ψ(R′i)ψ(k)|ψ(R′j) = ψ(k)]P [ψ(R′j) = ψ(k)]

=
1

N

∑
k

ψ(k)E(ψ(R′i)|ψ(R′j)) = ψ(k))

=
1

N(N − 1)

∑
k

ψ(k)

[∑
l

ψ(l)− ψ(k)

]

=
1

N(N − 1)

∑
k

[
ψ(k)

N(N + 1)

2
− ψ(k)2

]

=
1

N(N − 1)

[(
N(N + 1)

2

)2

−
∑
k

ψ(k)2

]

=
N

N − 1

(
N + 1

2

)2

−
E(ψ(R′i)

2)

N − 1

=
N

N − 1
[E(ψ(R′i))]2 −

E(ψ(R′i)
2)

N − 1

(2.4.13)

Putting (2.4.12) and (2.4.13) together gives a neat simplification:

=

(
N

N − 1
− 1

)
[E(ψ(R′i))]2 −

E(ψ(R′i)
2)

N − 1

=
[E(ψ(R′i))]2 − E(ψ(R′i)

2)

N − 1

= −
σ2
R

N − 1

(2.4.14)

as we sought to show. �

Theorem 2.4.4 (Variance of Rank Sums). We have

V (S1) =
mnσ2

R

N − 1

Where σ2
R = E(ψ(R′(xi))2)− [E(ψ(R′(xi)))]2 = 1

N

∑
i(ψ(R′(xi))− µR)2

Proof. Since there is a covariance between the adjusted ranks (see Rank Covariance) we use
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the definition of any sum of variances:

V (S1) =
∑

group1

V (ψ(R′(xi))) +
∑
i 6=j

Cov(ψ(R′(xi)), ψ(R′(xj)))

= mσ2
R −m(m − 1)

σ2
R

N − 1

= σ2
R

(
m −

m2 −m
N − 1

)
= σ2

R

(
mN −m −m2 +m

N − 1

)
= σ2

R

mn

N − 1
=
mnσ2

R

N − 1
(N −m = n)

as we sought to show. �

Proposition 2.4.1 (Rank Variance). If there are no repeats in the data, i.e. we use ordinal
ranks, then the rank sum variance σ2

S can be computed as

σ2
S =

mn(N + 1)

12

Proof. Notice the new simplified form of the rank variance σ2
R since the data has ordinal ranks

only:

σ2
R = E(R(x)2)− [E(R(x))]2 (2.4.15)

=
1

N

N∑
k=1

k2 −

[
1

N

N∑
k=1

k

]2

(2.4.16)

=
1

N

[
N(N + 1)(2N + 1)

6

]
−
[

(N + 1)

2

]2

(2.4.17)

=
(N + 1)(2N + 1)

6
−

(N + 1)2

4
(2.4.18)

=
(N + 1)[2(2N + 1)− 3(N + 1)]

12
(2.4.19)

=
(N + 1)(N − 1)

12
(2.4.20)

Using Variance of Rank Sums we can readily compute the variance of the rank sum as

σ2
S =

mn(N + 1)(N − 1)

12(N − 1)
=
mn(N + 1)

12

as we sought to show. �
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Chapter 3

∣∣∣∣∣ Week 3: More 2-Sample Tests

& Comparisons

3.1 Lecture 7: Mann-Whitney Test

3.1.1 Mann-Whitney Test
The Mann-Whitney (MW) test is another form of the WRS test under the strict assumption
that the distributions of the two samples have the same shape [3]. This feature allows us to
make CIs about the space between the two distributions. What makes the MW test work is
its ability to count how many observations from one group are below each observation
from the other group. We define the setup for test as follows:

Let X1, ..., Xm be our sample from group 1, they are iid

Let Y1, ..., Yn be our sample from group 2, they are iid with the same shape as group 1’s distn’s

The steps for conducting a hypothesis test with this method are

MW Test Steps

Step 1: State H0 and HA. As usual...(same questions to answer)

H0 HA

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) (µ1 ≥ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≥ F2(x) (µ1 ≤ µ2)

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) (µ1 6= µ2)

Step 2: Calculate test statistic
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• Our test statistic is2

UMW =
∑
i

∑
j

1(Xi < Yj) +
1

2

∑
i

∑
j

1(Xi = Yj)

where

1(Xi < Yj) =

{
1 if Xi < Yj

0 o.w.
and 1(Xi = Yj) =

{
1 if Xi = Yj

0 o.w.

i.e., UMW = (# of pairs (Xi , Yj) where Xi < Yj) + 1
2

(# of pairs where Xi = Yj)

Note: if group 1 is lower than group 2, UMW will be close to the maximum number of
pairs. If group 1 is larger than group 2, UMW will be close to 0. Note the number of
possible pairings is mn.

Step 3: Calculate the p-value

• Here the test statistic has its own known distribution the U or Mann Whitney
distribution. "Tail" percentiles of this distribution are found in table A4 online or
in R.

– Let U1−α/2 = (1− α/2)100th percentile of U

– Let Uα/2 = (α/2)100th percentile of U

Then the p-values for this test are ranges and are based off the alternative hypothe-
ses (remember if group 1 is higher than group 2, then UMW is low, but it group 1
is higher than group 2, then UMW is high):

Hypothesis Comp. p-value

HA : F1(x) ≤ F2(x) If UMW < Uα/2 < α/2

HA : F1(x) ≥ F2(x) If UMW > U1−α/2 < α/2

HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x) If UMW < Uα/2 or UMW > U1−α/2 < α

Step 4: If p-value < α, reject H0

F

Example 3.1.1 (Gorilla Weights). The weight or gorillas of the same age in two zoos are:

Zoo 1: 145, 155, 170, 180

Zoo 2: 130, 160, 165, 170

2See the Appendix for how this relates to the WRS test.
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We want to test if gorillas in zoo 1 weigh more in general.

(a) State H0 and HA

• Solution: H0 : F1(x) = F2(x) vs. HA : F1(x) ≤ F2(x) (µ1 ≥ µ2)

(b) List all possible pairs of observations (Xi , Yj)

• Solution: There are mn = (4)(4) = 16 total possible pairs; we list them below:

(145, 130) (155, 130) (170, 130) (180, 130)

•(145, 160) •(155, 160) (170, 160) (180, 160)

•(145, 165) •(155, 165) (170, 165) (180, 165)

•(145, 170) •(155, 170) ?(170, 170) (180, 170)

where (•) means (Xi < Yj) and (?) means (Xi = Yj)

(c) Calculate the MW test statistic and the appropriate p-value

• Solution: The MW test statistic is

UMW = (#of pairs(Xi < Yj)) +
1

2
(#of pairs(Xi = Yj))

= 6 +
1

2
(1) = 6.5

In table A4 we have at α = 0.05 or α = 0.10

Uα/2 =

{
0 if α = 0.05

1 if α = 0.10

Thus, since UMW > 1, p-value > 0.10/2 = 0.05

(d) Interpret the p-value in terms of the problem

• Solution: If in reality the distribution of weights for gorillas was the same between
the two zoos, we would observe our data (MW statistic) or more extreme more
than 5% of the time. Hence, we fail to reject H0 and do not have evidence to
declare the two populations (zoos) to be different in gorilla weights.

ª

3.1.2 CI for Shift Parameter
Instead of looking for a difference in means, medians, or totals between the two groups; we
still assume the distributions have the same shape but one distribution is shifted some distance
∆ from the other, this is a key assumption for the MW test. A graph of this idea is given
below:
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We call "∆" the "shift parameter." This means we assume (for the picture above)

F1(x) = F2(x + ∆)

which means that...

P (X1 ≤ x1) = F1(x) = F2(x + ∆) = P (X2 ≤ x1 + ∆) = P (X2 − ∆ ≤ x1)

i.e., P (X1 ≤ x1) = P (X2−∆ ≤ x1), so that X1 and X2−∆ have the same distribution. X2 is
higher than X1 on average, so we subtract by the shift parameter to get back X1 from
X2.

To find the CI for ∆ the shift parameter, we follow these steps:

CI for Shift Parameter ∆

Step 1: Find all nm pair-wise differences, Xi − Yj . Some will be positive and others will
be negative.

Step 2: Order the pairwise differences and call them pwd(1), ..., pwd(nm). Notice that these
are order statistics.

Step 3: We want the locations, call them ka and kb such that

P (pwd(ka) ≤ ∆ ≤ pwd(kb)) = 1− α

Notice if we set pwd(ka) = O(ka) and pwd(kb) = O(kb), then the CI becomes

P (O(ka) ≤ ∆ ≤ O(kb)) = 1− α

Which is the same form as we had for the population median’s CI. We can also state
this relationship as

P (ka − 1 ≤ U ≤ kb) = 1− α
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Since in the extreme case where O(kb) < 0, we have

O(ka) ≤ ∆ ≤ O(kb) =⇒ ka ≤ U ≤ kb

Even if O(kb) 6< 0, the implication still holds as the bounds will be smaller and we can
always get the same bounds as above as they are bigger. We finally adjust for the
discrete nature of data: ka 7→ ka − 1. Remember, the discrete nature of the data is
the reason we use ka − 1.

Thus we can use table A4 to find Uα/2 and U1−α/2 and our locations for the CI are:
ka = Uα/2 + 1 and kb = U1−α/2.

Essentially, we are using percentiles of U to find the locations for the bounds.

F

Example 3.1.2 (Theoretical Example). If m = 5, n = 5, and we want the 95% CI, we go to
2.5% (α/2) and find the percentiles. They are Uα/2 = 4 and U1−α/2 = 21. This makes the
CI for ∆ as

ka = Uα/2 + 1 = 5th location for ordered pairwise difference

kb = U1−α/2 = 21st location for ordered pairwise difference

Thus, a 95% confidence interval is (O(5), O(21)) = (pwd(5), pwd(21)). ª
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3.2 Lecture 8: Shift CI (cont.) & KS Test
We examine another application of the shift CI using the Mann-Whitney Test:

Example 3.2.1 (Gorilla Shift CI). Recall the Gorilla example:

pwd pwd pwd pwd

(145, 130) 15 (155, 130) 25 (170, 130) 40 (180, 130) 50

(145, 160) -15 (155, 160) -5 (170, 160) 10 (180, 160) 20

(145, 165) -20 (155, 165) -10 (170, 165) 5 (180, 165) 15

(145, 170) -25 (155, 170) -15 (170, 170) 0 (180, 170) 10

Ordered Difference: -25, -20, -15, -15, -10, -5, 0, 5, 10, 10, 15, 15, 20, 25, 40, 50

Find the 90% CI for the shift parameter.

• Solution: To find the 90% CI we go to the section of the table for α/2 = 0.10/2 = 5%.
Then, m = n = 4, and going to that combination finds "lower" = 1 (i.e. Uα/2 = 1)
and "upper" = 15 (i.e. U1−α/2 = 15).

Our CI is found using the locations

ka = Uα/2 + 1 = 2 kb = U1−α/2 = 15

I.e., our CI is (pwd(2), pwd(15)) or (20, 40). ª

Note: As with most confidence interval For a difference we have three possible outcomes for
our CI: postive, negative, or neutral:

(i) If the CI for ∆ has both bounds > 0, this suggests group 1’s distribution is larger than
group two’s distribution.

(ii) If the CI for ∆ has both bounds < 0, this suggests group 1’s distribution is smaller than
group two’s distribution.

(iii) In the CI for ∆ contains zero, then it suggests that there is no significant difference
between the two distributions.

N

We will now cover a popular technique that can be used to compare two distributions or
compare one group to a named distribution. This technique allows us to explicitly see if
F1(x) 6= F2(x).
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3.2.1 Kolmogarov Smirnov (KS) Test
Unlike the previous tests which test sees if there is a difference based on a certain statistic
(mean, median, total, etc...), the KS test looks for any type of difference (spread, center,
etc...). To perform this test, we follow these steps:

KS Test Steps

Step 1: The KS test uses an absolute difference, so there is only one pair of hypotheses:

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x)

Step 2: The test statistic simply measures the largest difference between the empirical
CDFs. For notation:

Let F̂1(x) = empirical (observed) CDF or group 1

Let F̂2(x) = empirical (observed) CDF or group 2

On order to obtain the test statistic, we

1. Combine the data from both groups into one set, S

2. Calculate F̂1(x) for group 1 using both groups observations and F̂2(x) for group 2
using both groups observations

3. Calculate the difference between |F̂1(x)− F̂2(x)| for all x ∈ S

4. Our test statistic is then the maximum of these differences

Ks = max
x
|F̂1(x)− F̂2(x)|

Step 3: The p-value is a permutation p-value (same form)(
# of |F̂1(x)− F̂2(x)| ≥ Ks

)(
n+m
m

)
Step 4: If p-value < α, reject H0

F

Example 3.2.2 (Machine Dispensing). A machine is supposed to dispense 160 oz a liquid.
Measurements were taken before and after maintenance:

Before: 16.55 15.36 15.95 16.43 16.01
After: 16.05 15.98 16.10 15.88 15.91

We want to test if the distribution of the liquid was the same before and after maintenance.
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We only are interested if they are the same or not, not so much the direction of the change,
hence we use the KS test.

(a) State H0 and HA

• Solution:

H0 : F1(x) = F2(x) HA : F1(x) ≤ F2(x) or F1(x) ≥ F2(x)

(b) Calculate the KS test statistic

• Solution: a table summarizing the process of calculating the test statistic is as
follows:

Group 1 2 2 1 2 1 2 2 1 1
Data 15.36 15.88 15.91 15.94 15.98 16.01 16.05 16.10 16.43 16.55
F̂1(x) 1/5 1/5 1/5 2/5 2/5 3/5 3/5 3/5 4/5 1
F̂2(x) 0 1/5 2/5 2/5 3/5 3/5 4/5 1 1 1
|Diff| 1/5 0 1/5 0 1/5 0 1/5 2/5 1/5 0

=⇒ Ks = max |Diff| = 2/5

(c) Find the p-value associated with your test statistic:

• Solution: For the 252 possible permutations, the relative frequency of Ks follows:

K∗s 0.2 0.4 0.6 0.8 1
P (K = K∗s ) 32/252 130/252 70/252 18/252 2/252

The p-value is thus:

P (K ≥ Ks) = P (K ≥ 2/5) =
130 + 70 + 18 + 2

252
≈ 0.873

(d) Interpret the p-value in terms of the problem

• Solution: If in reality the distribution of ounces dispensed before and after repair
were the same; we would observe our test statistic or more extreme (greater) with
probability 0.873.

(e) Give your conclusion

• Solution: Since p-value > 0.05, we do not have enough evidence to reject H0.
Conclude H0, the distributions are the same.

ª

We give now a summary of all two sample tests that we have shown so far:
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All two-sample tests

1. Permutation tests

2. Wilcoxon-Rank-Sum

3. Mann-Whitney

4. Kolmogorov Smirnov

N

Next we will discuss power simulations for certain comparisons of the above.
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3.3 Lecture 9: Comparison of Two-Sample Tests

3.3.1 Comparison of Two-Sample Tests
First, we compareDi = (power of t-test - power of permutation test) when the data is normal
(best case scenario for a t-distribution. We give a table of the results; note that the groups
simulated are balanced (equal numbers), i.e. m = n. We only give the size of one group.

R (# of simulations)

α sample size 100 200 400 800 1600 3200

Di

0.01 10 0.087 0.048 0.032 0.015 0.014 0.010
0.01 20 0.093 0.040 0.021 0.015 0.009 0.007

0.05 10 0.029 0.019 0.017 0.010 0.005 0.008
0.05 20 0.012 0.008 0.006 0.005 0.008 0.003

Notice that even in the best case scenario for a t-test, as long as R is large then there is very
little difference in power for the permutation test vs t-test (values on the far right are close
to 0 in all cases).

Next we will compare using the mean and median with the permutation test vs the WRS test.
In the the table that follows

Let Di = |power for WRS− power for permutation| R = 1600

and the winning test (with the higher power) is given in parenthesis.

simulated dist. statistic m = n = 10 m = n = 20
Di

Normal mean 0.045 (P) 0.027 (P)
median 0.031 (W) 0.059 (W)

Laplace mean 0.035 (W) 0.080 (W)
median 0.033 (P) 0.024 (P)

Cauchy mean 0.276 (W) 0.502 (W)
median 0.080 (P) 0.084 (P)

In summary,
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Distribution Statistic Winner

Symmetric mean P
Symmetric median WRS

Asymmetric mean WRS
Asymmetric median P

This gives you an idea of when to use what test.

Note: KS is mainly used when you have no preference for a specific statistic. It is a more
sensitive test and can find differences in center and spread of a distribution. But it does not
give direction of the difference. N

3.3.2 Tests for three or more groups
We now discuss methods for comparing distributions of 3 or more groups. This is non-
parametric ANOVA. In the text that follows we adopt the notations:

Notation: Assume we have k groups, then let...

• Xi j = jth observation from ith group

• ni = sample size of ith group

• x̄i = sample mean of ith group

• s2
i = sample variance of ith group

• N = overall sample size =
∑k

i ni

• x̄ = overall sample mean =
∑k

i ni x̄i/N

N

The overall idea is the same as in ANOVA–we compare the difference in means to the overall
mean and to the spread of each group.

Recall that

SST = Sum of Squares Treatment =

k∑
i=1

ni(xi − x̄)2

MST = Mean Sum of Squares Treatment = SST/(k − 1)

These measure the difference between groups.
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Also,

SSE = Sum of Squares Error =

k∑
i=1

(ni − 1)s2
i

MSE = Mean Sum of Squares Error = SSE/(N − k)

These measure the variances within each group. Our test statistic Fs compares how big the
variation between groups is to that within each group. In other words,

Fs =
MST

MSE

Notice...

• When Fs is large ⇒ variance between groups is larger than that within groups ⇒ means
are significantly different

• When Fs is small ⇒ variance between groups is smaller than that within groups ⇒
means are not significantly different

F

Traditionally, ANOVA makes the following assumptions:

ANOVA Assumptions

1. Random samples are taken from all k groups

2. Measurements from all k groups are independent (observing one does not change what
can be observed for the others)

3. σ1 = σ2 = σ3 = · · · = σk (Assessed by Levenes Test)

4. εi j
i id∼ N(0, σ2

ε ) (Assessed by QQ Plot or Shapiro-Wilks Test)

F

Then Fs ∼ F[k−1,N−k] distribution.

But when the assumptions do not hold, we do not know what the distribution of Fs is.
However, we can find a permutation distribution under the assumption that all of the groups
have the same mean (center). In order to conduct this test, we follow these steps:

Steps for ANOVA Permutation Test

Step 1: State the hypotheses.
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• The null and alternative are

H0 : F1(x) = F2(x) = · · · = Fk(x)

HA : Fi(x) ≤ Fj(x) or Fi(x) ≥ Fj(x) for some i 6= j

Step 2: Calculate the observed statistic:

Fobs =
MST

MSE

Step 3: Find the permutation p-value

• There are N!/n1!n2! . . . nk ! total permutations, and this value is typically unman-
ageable, so we use random permutations. The process is:

1 Randomly assign the N observations into the k groups R > 4000 times (null
lets us do this)

2 Calculate the R values of Fs , denoted Fi

3 Our p-value is (# of Fi ≥ Fobs/R)

Step 4: If p-value < α, reject H0

F
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3.4 Appendix (Week 3)
We give an explaination for as to why the MW test gives identical results to the WRS test.

Theorem 3.4.1 (MW and WRS Equivalence). The test statistics used for the MW test and
WRS test yeild identical results, i.e.

UMW = ϕ(UWRS)

for some function ϕ.

Proof. Notice that UMW gives the number of observations of group 2 that are greater than
those of group 1, taking into account for ties between the data sets. Notice that when the
two groups are put into the same data set, the rank of any entry in group 2 tells us the
number of observations (either from group 1 or group 2) that are less than the current entry
in group 2. For example, if R(x) = 5 where x ∈ Group 2, then there are 5 observations less
than this observation from group 2; they could be in either group though. If we were to sum
these ranks only for group 2, then we get the total number of observations that are less than
the ones in group 2, including those in group 2 themselves. To get only those observations
that are from group 1, we subtract the total amount of obervations from group 2 that are
counted as we sum. This would be 1 + 2 + 3 + · · ·+ n2 in sum this becomes

n2(n2 + 1)

2

Hence, the quantity that gives the number of observations from group 1 that are less than
those from group 2 is

UMW = R2 −
n2(n2 + 1)

2

But, notice that R2 = UWRS so UMW = ϕ(UWRS) as we sought to show. This leads to the
exact same inferecnes since the p-value has form:

P (UMW ≥ uMW ) = P (R2 ≥ r2)

so the results are the same. This concludes the proof. �

Note: This proof was adapted from ideas in [7].
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Chapter 4

∣∣∣∣∣ Week 4: More Non-Parametric

ANOVA

4.1 Lecture 10: ANOVA Permutation & KW Test
We begin with an example of the ANOVA permutation test from the previous lecture.

Example 4.1.1 (Mice & Dye). Mice were fed three amounts of red dye "Low," "Medium,"
and "High." To test effect of these dyes, one group was also given a "Control" dye. The
time to death in weeks was measured with summary statistics below:

Control Low Medium High

Mean 91.36 71.88 72.40 65.25
Std. Dev. 11.01 11.59 22.14 28.06

ni 11 9 10 8

(a) What assumptions may be violated based on the above?

• Solution: While we cannot assess normality, it does seem that the standard devi-
ations by group may not be equal (medium and high are twice as large as control
and low).

(b) State the appropriate null and alternative.

• Solution:

H0 : F1(x) = F2(x) = · · · = Fk(x)

HA : Fi(x) ≤ Fj(x) or Fi(x) ≥ Fj(x) for some i 6= j

(c) Calculate the observed value of the test statistic.
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• Solution: If we know MST = 1266.68, then

SSE =

k∑
i=1

(ni − 1)s2
i = 10(11.01)2 + 8(11.59)2 + 9(22.14)2 + 7(28.06)2

= 12213

and

MSE = 12213/(38− 4) = 359.22

=⇒ Fobs = MST/MSE = 1266.68/359.22 = 3.5262

(d) Calculate the p-value or estimate it.

• Solution: Based on R = 5000 permutations, we found the following permutation
distribution of F:

F ∗ 1 2 3 4 5 6 7
P (F ≥ F ∗) 0.31975 0.1495 0.047 0.018 0.008 0.005 0.002

Since Fobs = 3.5262 is between 3 and 4 our p-value is between 0.018 and 0.047.

(e) How many possible permutations were possible?

• Solution: This would be an extension of the binomial coefficient, called the multi-
nomial coefficient where the groups are the treatment and control groups:

38!

11!9!10!8!
= 2.467× 1020

(f) State your conclusion in terms of the problem if α = 0.05.

• Solution: The p-value is < α, so we reject H0. We conclude that at least one of
the distributions of time until death is different between the dosage groups, i.e. at
least one mean comparison leads to inequality. Based on the data, which groups
do you think are most likely to differ?

ª

4.1.1 Kruskall-Wallis (KW) Test
Similar to the WRS test, KW test uses ranks rather than the actual data (Xi j) values. We
can use this if we have outliers and need a large sample to work with. This test also allows us
to make confidence intervals for differences in ranks. The process for the test is quite the
same is with all permutation tests: (Data) ⇒ (Test Statistic) ⇒ (Permutation Distribution)
⇒ (p-value) ⇒ (Decision). To conduct this test, we follow the following steps:
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KW Test Steps

Step 1: State H0 and HA

• Same as with permutation ANOVA:

H0 : F1(x) = F2(x) = · · · = Fk(x)

HA : Fi(x) ≤ Fj(x) or Fi(x) ≥ Fj(x) for some i 6= j

Step 2: Calculate the test statistic

• By definition, we have

KWobs =
1

S2
R

k∑
i=1

ni

(
R̄i −

N + 1

2

)2

=
variability of ranks between groups

overall variability of ranks

Where S2
R = variance or ranks regardless of groups (overall variance).

Note: This form of the KW test works when ties are present or not.

Step 3: Calculate the approximate permutation p-value

• Permute the groups R times find KWi for all R permutations. Then,

p-value = (# of KWi ≥ KWobs)/R

Step 4: Reject H0 if p-value < α

F

Note: The (KW) test will have higher power than a permutation test when:

1. Outliers are present

2. The distribution of one or more groups is skewed

3. The distribution of one or more groups has "heavy tails"

N

4.1.2 Large Sample Approximation to KW
If the ni ’s are large but an assumption of ANOVA is violated we may use a large sample
approximation to the KW test.
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Motivation: In traditional ANOVA, we know that SST/σ2
ε is distributed χ

2 with d.f. = k − 1.

Now, for the KW test we replace the data Xi j with ranks Ri j (the corresponding ranks). We
then can show that SSTR =

∑k
i=1 ni

(
R̄i − N+1

2

)2
. But, the normalizing constant for the χ2

distribution has changed (since we are using Ri j). It follows that since R̄i is an average, that
over large samples, it will be approximately normally distributed with mean µR̄i = (N + 1)/2

and variance S2
R̄i

or

R̄i ∼ N
(
N + 1

2
, S2

R̄i

)
To get an idea as to how we could turn R̄i into a test statistic, we will assume no ties in the
data and use ordinal ranks. If this is the case, then E(R̄i) = (N + 1)/2 and we derive the
variance as follows:

V (R̄i .) =
1

n2
i

[
ni∑
j=1

V (Ri j) +
∑
j 6=k

Cov(Ri j , Rik)

]

=
1

n2
i

[
niS

2
R + (ni)(ni − 1)

S2
R

N − 1

]
=

1

n2
i

[
ni(N

2 − 1)

12
+

(ni)(ni − 1)(N + 1)

12

] (
S2
R =

N2 − 1

12
; no ties

)
=

1

n2
i

[
ni(N + 1)(N − ni)

12

]
=

(N + 1)(N − ni)
ni(12)

=
(N + 1)N

ni(12)
−

1

12
≈

(N + 1)N

ni(12)

It naturally then follows that

R̄i . − E(R̄i .)√
V (R̄i .)

∼ N(0, 1) (approx.)

and thus (
R̄i . − E(R̄i .)√

V (R̄i .)

)2

∼ χ2
[1] (approx.)

making

k∑
i=1

(
R̄i . − E(R̄i .)√

V (R̄i .)

)2

=

k∑
i=1

(
ni [R̄i . − (N + 1)/2]2

N(N + 1)/12

)
=
N − 1

N(S2
R)

k∑
i=1

ni [R̄i .−N(N+1)/2]2 ∼ χ2
[k−1]

Notice if N is large enough, then N − 1/N ≈ 1. This makes our new statistic as

1

S2
R

k∑
i=1

ni [R̄i . − N(N + 1)/2]2 ∼ χ2
[k−1]
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Hence, it is suggested that the constant "c" s.t.

E[c(SSTR)] = k − 1

is c = 1/S2
R since it normalizes SSTR so each summand is the square of a standard normal

variate [7] [1].

This gives the statistic as

KW =
1

S2
R

∑
ni

(
R̄i . −

N + 1

2

)2

and KW ∼ χ2
[k−1]. Thus, the 4 steps to conduct a hypothesis test using this approximation

are:

Normal Approximation to KW Test Steps

Step 1: State H0 and HA

H0 : F1(x) = F2(x) = · · · = Fk(x)

HA : Fi(x) ≤ Fj(x) or Fi(x) ≥ Fj(x) for some i 6= j

Step 2: Calculate the test statistic

KW =
1

S2
R

∑
ni

(
R̄i . −

N + 1

2

)2

Step 3: Calculate the p-value p-value = P (χ2
[k−1]) ≥ KW

Step 4: If p-value < α, reject H0

F
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4.2 Lecture 11: KW Example & Mult. Comparisons
We begin with an example using the large sample approximation for the KW test.

Example 4.2.1 (Food Saltiness). The saltiness score from 0 to 5 for three food products was
recorded with the following summary statistics:

I II III

x̄i 4 2.62 1.67
si 1.15 1.41 0.82
R̄i 15.86 10.31 6.25
ni 7 8 6

where S2
R = 36.9.

(a) Name an assumption for parametric ANOVA and how we would assess it.

• Solution: The data we are given isn’t alone to determine if what we sampled
came from a Normal Distribution, so we have to use a Q-Q Plot and/or Shapiro-
Wilks Test to assess normality. Also, looking at the sample standard deviations si ,
we can see some variation, giving reason to assess equal population variances via
Levene Test.

(b) Find the test statistic and p-value for the large sample approximation to KW

• Solution: Following the form given,

KWobs =
1

S2
R

∑
ni

(
R̄i . −

N + 1

2

)2

=
1

36.9

[
7(15.86− 11)2 + 8(10.31− 11)2 + 6(6.25− 11)2

]
= 8.252

Since k = 3, we know df = k − 1 = 3− 1 = 2. This implies

P (χ2
[2] > 8.252) ∈ [0.01, 0.025] (by chi-squared table)

(c) Suppose the permutation p-value based on 5000 random permutations is 0.0094. If
α = 0.01, do your conclusions from (b) and the permutation test agree? Explain.

• Solution: They don’t. We would fail to reject H0 for the large sample approxi-
mation but reject for the permutation test. It appears that the permutation test
is more strict in assessing group differences.

(d) What should be taken into account when choosing which non-parametric test to
use?

• Solution: We should consider the distribution of each group, if there are any
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outliers, and if the assumptions of parametric ANOVA are violated. If they aren’t,
then a non-parametric test will have lower power than a parametric one.

ª

The next question to consider when we reject the null is, "which groups are different?" The
tests we have made only detect if any difference is present, to make a better inference it helps
to know where the differences are. Now, if we have K groups there are

(
k
2

)
possible pair wise

combinations that can be made.

However, if we create
(
k
2

)
hypothesis tests or (CIs) for comparing the groups (which would

identify which groups were different), we would have the problem of multiple comparisons as
we are making what are known as simultaneous inferences.

4.2.1 Corrections for Multiple Comparisons
Suppose we make "g" total CIs (or HTs). Then, we have the definitions:

Definition 4.2.1 (Error Rate/Confidence).

"Overall" Error Rate = Chance of at least one Type I error out of "g" CIs

= Opposite of Chance no Type I Errors

= 1− Chance of no Type I Errors

= 1− (1− α)g

and

"Overall" Confidence = Confidence in all CIs Simultaneously

= All CIs "Correct" (contain parameter of interest)

= (1− α)g

♠

Also, recall that α is the probability of Type I Error for a single HT/CI. Notice that when
we make many CIs the overall confidence decreases (since (1− α) ∈ (0, 1) implies for any
g ∈ N that (1− α)g < (1− α)).

A way to correct for this is to use a Bonferroni correction and make corrected simultaneous
family-wise CIs. The correction makes use of Boole’s Inequality which we state for reference:

Boole’s Inequality: For any events Ei where i ∈ {1, ..., n}, we have

P

(
n⋃
i=1

Ei

)
≤

n∑
i=1

P (Ei)
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N

We now state Bonferroni’s Correction:

Theorem 4.2.1 (Bonferroni’s Correction). For g family-wise CIs with confidence 1− α, we
have

(1− α)g ≤ (1− α/g)g ≤ 1− α

⇐⇒ (1− α)− (1− α)g ≥ (1− α)− (1− α/g)g

Proof. We first prove (1− α)g ≤ (1− α/g)g. Clearly, 1− α ≤ 1− α/g since α > α/g since
g is by definition greater than 1. It then naturally follows that (1− α)g ≤ (1− α/g)g since
xg is an increasing fuction for all positive x .

Now we prove the next equality. Suppose we have g CIs with Type I Error rate α/g. If we
denote events Ei = Chance of no Type I Error, we have P (Ei) = (1−α/g). We then proceed
as follows:

P

(
g⋂
i=1

Ei

)
= (1− α/g)g

= 1− P

(
g⋃
i=1

Eci

)

≤ 1−
g∑
i=1

P (Eci ) (Boole’s Ineq.)

= 1− g(α/g)

= 1− α

Hence, (1− α/g)g ≤ 1− α. From here, we have the first statement in the biconditional, the
second follows by subtracting 1− α on both sides and multiplying by -1. This concludes the
proof. �

Remark 4.2.1. The correction is simple, make all the individual CIs have confidence level
(1−α/g)100% instead of each having (1−α)100%. This increases the width of all individual
CIs but keeps the overall error rate controlled at ≤ α using α = 0.10, 0.05, 0.01. �

We now give an example illustrating this technique.

Example 4.2.2 (Error Analysis). Suppose α = 0.05. Then we can construct a table showing
the "overall" error for regular intervals and intervals using the Bonferroni correction.
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g 1 3 6 10 30
No Bonferroni: 1− (1− α)g 0.05 0.1426 0.2649 0.401 0.78
Bonferroni: 1− (1− α/g)g 0.05 0.0492 0.0490 0.0489 0.04881

Notice the error rate is stable for Bonferroni Corrected intervals (less variance about 0.05).
ª

In interpretation, all we add is "we are corrected/family-wise/Bonferroni/simultaneous/overall
(1− α)100% confident..."

In short, for Bonferroni Correction: anywhere you would use α replace it with α/g.

With this method, we can make cutoffs for group comparisons, i.e. if the observed group
differences are greater than some threshold value, the groups are most likely different. The
Bonferroni Cutoff is as follows:

Bonferroni Cutoff (Non-Parametric Version): If |R̄i − R̄j | ≥ z1−α/2g

√
S2
R(1/ni + 1/nj),

then the average ranks for group i and j are significantly different. F

There is also another choice when making pairwise comparisons. This is known as Tukey’s
Honest Significant Difference (HSD). The parametric version of this test is

• If |x̄i − x̄j | ≥ q(α, k, df = N − k)
√
MSE (1/ni + 1/nj) where q(·) denotes the Tukey

table distribution, then the averages of group i and j are significantly different.

To make the non-parametric version, we replace everything that involved Xi j with Ri j . Thus,

HSD (Non-Parametric Version): If |R̄i − R̄j | ≥ q(α, k, df = N− k)
√

(S2
R/2)(1/ni + 1/nj),

then the average ranks for group i and j are significantly different. F

We now give some notation to make work easier when conducting hypotheses:

Cutoff Notation:

• Let BON = the Bonferroni cutoff = z1−α/2g

√
S2
R(1/ni + 1/nj)

• Let HSD = the Tukey cutoff = q(α, k, df = N − k)
√

(S2
R/2)(1/ni + 1/nj)

N

Example 4.2.3 (Salt Example (cont.)). In the salt example we can calculate BON, HSD,
and |R̄i − R̄j |. Let α = 0.05. Find which groups are significantly different.

• Solution: There are
(

3
2

)
= 3 possible pairwise comparisons. We compute on possible



4.2. LECTURE 11: KW EXAMPLE & MULT. COMPARISONS 61

comparison, it is between I and III:

z1−0.05/2(3) = 2.39 and√
S2
R(1/7 + 1/8) = 3.14

=⇒ BON = 8.07

If we keep computing, we arrive at this table:

I vs. II I vs. III II vs. III
|R̄i − R̄j | |15.86− 10.31| |15.86− 6.25| |10.31− 6.251|

= 5.55 = 9.61 = 4.06
BON 7.51 8.07 7.84
HSD 8.03 8.62 8.37

Thus, groups I and III have significantly different average ranks.

ª
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Chapter 5

∣∣∣∣∣ Week 5: Group Comparisons (cont.)

& Linear Tests

5.1 Lecture 12: Permutation Cutoffs/Rev. of Linear
Tests

5.1.1 Permutation Cutoffs for HSD and Bonferroni
If we have low amount of data to work with, we can also find permutation based versions of
Tukey’s HSD criteria by approximating q(·). Or, if we prefer, we can find

(
k
2

)
permutation

HTs for two groups and compare the p-values to α/g (Bonferroni correction).

For Tukey’s permutation HSD, the steps to find the cutoff are as follows:

Tukey’s Permutation HSD:

Step 1: Randomly shuffle each observation into a group, R > 4000 times (as with non-
parametric ANOVA)

Step 2: Pick a comparison (dispersion) measure, Ti j . Common values are |x̄i − x̄j |, |R̄i −
R̄j |, |mediani −medianj |, and (x̄i − x̄j)/

√
MSE(1/ni + 1/nj).

Step 3: For each R permutation, calculate QR = maxi ,j |Ti j |. We choose the maximum out
of all the group comparisons since under the null, all groups are identical in distribution
and center.

Step 4: Let q∗(α) be the (1−α)100% percentile of Q. Then, groups i and j are significantly
different when

(a) |T obs
i j | > q∗(α) OR (equivalently)

(b) p-value = (# of QR ≥ |T obs
i j |)/R ≤ α

F
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Example 5.1.1 (Salt Example (cont.)). Assess any group difference with the same data.

• Solution:

– Method 1 (Bonferroni): In R, 3 WRS tests were performed with the following
permutation p-values

I vs. II I vs. III II vs. III
p-value 0.07506 0.00641 0.2254

Using Bonferroni correction, to be ≈ (1−α)100% confident in our joint inferences,
we compare these to α/3. If α = 0.05 we compare them to 0.05/3 = 0.0167.
Thus, again group I vs. III are significantly different.

– Method 2 (Permutation HSD): Based on R = 4000 permutations, the Tukey
HSD permutation cutoff is q∗(α) = 1.7505. The value of the dispersion measure
is Ti j = |x̄i − x̄j |. A table giving the comparisons is then:

Groups I vs. II I vs. III II vs. III
Ti j 1.38 2.33 0.95
q∗(α) 1.7505 1.7505 1.7505

This gives the same inference as with method 1.

So all methods with differing criteria agree that groups I and III are significantly different.

ª

5.1.2 Kruskall-Wallis vs Permutation
Since KW uses ranks it tends to have higher power when...

1. There are outliers

2. The distributions are highly skewed

3. The distribution has "heavy tails" (ex: t-distribution)

5.1.3 Trends and Associations
First, we will consider associations between two numerical variables.

Recall: The simplest type of association is a linear association when one variable has a linear
trend with another. N

One of the ways to measure the strength of a linear relationship is through correlation. For
completeness, we give a definition here:
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Definition 5.1.1 (Correlation). The correlation ρ between two random variates X and Y is

ρ =
Cov(X, Y )

σXσY
=
E[(X − E(X))(Y − E(Y ))]

σXσY

Note that ρ ∈ [0, 1] only. ♠

Parametric Test For Correlation

For review, we give the parametric version for a correlation test. Let ρ denote the population
correlation between numeric random variables X and Y . Assume we measure n pairs of data,
(xi , yi). Then, to conduct a parametric correlation test, we follow these steps:

Parametric Correlation Test

Step 1: State the hypotheses

H0 HA

H0 : ρ = 0 HA : ρ 6= 0

H0 : ρ ≥ 0 HA : ρ < 0

H0 : ρ ≤ 0 HA : ρ > 0

Step 2: Calculate the test statistic

ts = r

√
n − 2

1− r 2
(df = n − 1)

where

r =
1

n − 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
Step 3: Calculate the p-value

HA p-value
HA : ρ 6= 0 2P (t > |ts |)
HA : ρ < 0 P (t < ts)

HA : ρ > 0 P (t > ts)

Step 4: Reject H0 if p-value < α

F

In this test, we assume...

1. Pairs are independent (random selection of pairs)

2. (xi , yi) are distributed bivariate normal

Alternatively, we could also create the linear regression line and create a test for the slope. In
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this setup...

True Model: Yi = β0 + β1xi + εi
Least Squares Line: ŷ = β̂0 + β̂1xi

where β̂1 = r(sx/sy) and β̂0 = ȳ − β̂1x̄ . The steps, then, to conduct a parametric regression
test are:

Least-Squares Parametric Test

Step 1: State the hypotheses

H0 HA

H0 : β1 = 0 HA : β1 6= 0

H0 : β1 ≥ 0 HA : β1 < 0

H0 : β1 ≤ 0 HA : β1 > 0

Step 2: Calculate the test statistic

ts = β̂1

√∑
(xi − x̄)2

MSE
(df = n − 2)

where

MSE =

∑
(yi − ŷi)2

n − 2

Step 3: Calculate the p-value

HA p-value
HA : β1 6= 0 2P (t > |ts |)
HA : β1 < 0 P (t < ts)

HA : β1 > 0 P (t > ts)

Step 4: Reject H0 if p-value < α

F

With linear regression we assume...

1. Pairs are randomly sampled and independent

2. εi
i id∼ N(0, σ2

ε )

Notice:

• If β1 or ρ = 0, then no linear relationship between Y and X

• If β1 or ρ < 0, then negative linear relationship

• If β1 or ρ > 0, then positive linear relationship N
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5.2 Lecture 13: Non-Parametric Linear Tests
The most common reasons for using a non-parametric test are...

1. Many outliers present (violates normality)

2. Non-constant variance (violates normal distribution)

3. Small sample size (may not be able to conclude normality of data)

5.2.1 Permutation Test for Slope
If we assume that H0 : β1 = 0 is true, it means that Y does not tend to change with X. In
other words, any value of Y should be equally likely to be paired with any X since there is no
association between the two variates. In order to perform a permutation test for the slope,
we follow these steps...

Permutation Least-Squares Test

Step 1: State H0 and HA

H0 HA

H0 : β1 = 0 HA : β1 6= 0

H0 : β1 ≥ 0 HA : β1 < 0

H0 : β1 ≤ 0 HA : β1 > 0

Step 2: Calculate the observed test statistic:

β̂obs
1 = estimated least-squares slope = r

sy
sx

Step 3: Calculate the permutation p-value:

• To permute the groups, there are n ways to pair The first yi with an xi . Then n−1

ways to pair The second yi with an xi &etc... This gives n! total permutations. To
obtain a permutation distribution for β̂1 we:

1 Permute the data, and calculate β̂i

2 Repeat for either...

– All n! permutations OR

– R > 3000 random permutations

3 The actual or estimated permutation p-values are:

HA Actual Estimated
β1 > 0 (# of β̂1 ≥ β̂obs

1 )/n! (# of β̂1 ≥ β̂obs
1 )/R

β1 < 0 (# of β̂1 ≤ β̂obs
1 )/n! (# of β̂1 ≤ β̂obs

1 )/R

β1 6= 0 (# of |β̂1| ≥ |β̂obs
1 )|/n! (# of |β̂1| ≥ |β̂obs

1 |)/R
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4 If p-value < α, reject H0 F

Example 5.2.1 (Physical Demand vs. Salary). Ratings for salary and physical demand were
recorded on a scale from 1 to 10. The ranked results were...

Salary (Y ): 2 6 3 5 7 10 9 8 4 1
Demand (X): 5 2 3 8 10 9 1 7 6 4

With summary statistics

Salary Demand
Mean 5.5 5.5

Std. Dev. 3.03 3.03

and r = 0.261 as well as n = 10.

Note: The data has been ranked and there are no ties, so ȳ = x̄ and sy = sx .

(a) Find the estimated slope

• Solution:
β̂obs

1 = r
sy
sx

= 0.261

(
3.03

3.03

)
= 0.261

(b) Based on R = 4000 random permutations, we find the following permutation distribu-
tion:

K -1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1
P (β̂ i1) ≥ K 1 0.9920 0.9295 0.7550 0.5055 0.2475 0.0825 0.0075 0

Assuming HA : β1 > 0, estimate the p-value.

• Solution: Our p-value is P (β̂ i1 ≥ 0.261) and by the table above we have

P (β̂ i1 ≥ 0.25) = 0.2475 and P (β̂ i1 ≥ 0.50) = 0.0825

=⇒ p-value ∈ [0.0825, 0.2475]

Note: From R, (# of β̂ i1 ≥ 0.261)/4000 = 0.2355

(c) State your conclusion in terms of the problem

• Solution: Since p-value > α for any α > 0.10, we fail to reject H0. We can
not conclude that there is a significant positive linear relationship for the scores of
salary and scores of physical demand.

Note: There were 10! = 362, 880 possible permutations. We sampled (if each permutation
was unique) 4000/10! ≈ 1.1% of them. Do you think this is enough? Why? ª
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5.2.2 Large Sample Approximation to Permutation
If an assumption of regression is violated and if n ≥ 30, we can use a large sample approximation
to the permutation slope test. But, before moving on, we state one proposition that is
important for the test.

Proposition 5.2.1 (Slope with Null Sample Correlation). For any sample where r = 0,
assuming a (simple) least squares model is the best fit, we have β1 = 0 too.

Proof. With the use of a least-squares model and knowledge that r = 0, we have β̂1 =

r(sy/sx) = 0(sy/sx) = 0 and β̂0 = ȳ − β̂1x̄ = ȳ . This makes the sample line as

yi = ȳ

Now, under least squares, E(Yi) = yi . This makes it so

β0 + β1xi = ȳ ∀xi ∈ Domain

It then follows that β1 = 0 as β0, β1 are fixed constants but xi ’s are not. Thus, r = 0⇒ β1 = 0

as we sought to show. �

Notice that for any single sample where r = 0, any instance of this quantity for r always gives
β1 = 0. Any variation is solely attributed by the εi ’s then.

We now state a method for conducting a large sample approximation for the permutation test
for association:

Permutation Large Sample Approximation Test for Association

Step 1: State H0 and HA

H0 HA

H0 : ρ1 = 0 HA : ρ1 6= 0

H0 : ρ1 ≥ 0 HA : ρ1 < 0

H0 : ρ1 ≤ 0 HA : ρ1 > 0

Step 2: Calculate the test-statistic

zs =
(r − 0)

1/
√
n − 1

= r
√
n − 1

since under the null hypothesis (no association) r
appx∼ N(0, 1/

√
n − 1)1

Step 3: Calculate the p-value

1See the Appendix for a derivation
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HA : ρ 6= 0 2P (Z > |zs |)
HA : ρ < 0 P (Z < zs)

HA : ρ > 0 P (Z > zs)

F

Example 5.2.2 (Salary & Physical Demand (cont.)). Continuing previous example, recall
n = 10 and r = 0.261. Let’s test for association using a large sample approximation to the
permutation test. The test-statistic is

zs = 0.261
√

10− 1 ≈ 0.8253 and HA : ρ > 0

So the p-value is P (Z > 0.8253) ≈ 0.2033. Thus, again we fail to reject H0.

Notice that the p-values were quite different (0.2355 vs 0.2033). Thus, the technique we
use has a lot of influence on the outcome. How would you explain this?

What likely occurred in this sample is our sample size is too small, so the p-value is not
accurate in the normal approximation. ª
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5.3 Lecture 14: Ranked Correlation Tests
Just like in the other non-parametric tests, there is a ranked version for correlation tests.

Notice that if we rank X and Y the general trend of linear relationships still hold. For example,
if Y tends to increase with X the rank of Y should also tend to increase with the rank of X.
This means that there is a rank correlation between X and Y .

5.3.1 Spearmans Rank Correlation
To calculate Spearman’s Rank Correlation we use the traditional formula for correlation and
replace (xi , yi) with the corresponding adjusted ranks.

Notation: Let...

• R(xi) = rank for xi , ∀i ∈ {1, ..., n}

• R(yi) = rank for yi ∀i ∈ {1, ..., n}

• R̄(x) = average rank of xi and R̄(y) = average rank of yi

• sR(x) = standard deviation of rank of X

• sR(y) = standard deviation of rank of Y

Then, we have

rs = Spearman’s Rank Correlation

=
1

n − 1

∑
i

(
R(xi)− R̄(x)

sR(x)

)(
R(yi)− R̄(y)

sR(y)

)
N

Then, the steps to perform a ranked correlation test are:

Spearman’s Ranked Correlation Test

Step 1: State H0 and HA

H0 HA

H0 : ρs = 0 HA : ρs 6= 0

H0 : ρs ≤ 0 HA : ρs > 0

H0 : ρs ≥ 0 HA : ρs < 0

where ρs = population Spearman’s correlation.

Step 2: Calculate the test-statistic, rs as defined above

Step 3: Calculate the p-value. Note that for n = 1, ..., 10, there are critical values of the
Spearman’s correlation in table Al2. They give P (r ∗s ≥ c) for various c values. Use it to
compute p-values for the following cases:



5.3. LECTURE 14: RANKED CORRELATION TESTS 71

HA p-value
ρs 6= 0 2P (r ∗s ≥ |rs |)
ρs > 0 P (r ∗s ≥ rs)
ρs < 0 P (r ∗s ≤ rs)

Note: For the tables, you may have to use the fact that P (r ∗s < −c) = P (r ∗s > c) if
H0 : ρs < 0. F

Note: There is also a large sample approximation for Spearman’s which is exactly the same
as that for the large sample approximation to permutation except we replace r by rs . Same
process, different p-values though. N

Example 5.3.1 (Theoretical Spearman’s). Suppose rs = −0.74, n = 8, and HAρs 6= 0. Then,
the table A12 gives P (r ∗s ≥ 0.74) ≈ 0.023, so that the p-value is 2P (r ∗s ≥ | − 0.74|) ≈
0.046 < 0.05. If α = 0.05, we reject H0 and conclude there is a linear relationship between
the ranks of X and Y . ª

5.3.2 Kendall’s Tau
An alternative that doesn’t use ranks directly, but also does not use the original data is
Kendall’s tau (τ). Note that this test uses the same ideas as the Mann-Whitney Test.

Suppose we look at a pair of paired observations {(xi , yi), (xj , yj)} ∀i < j say (x1, y1) and
(x2, y2). Then...

1. If as X increases Y tends to also increase, then we should see x1 > x2 ⇒ y1 > y2

2. If as X increases Y tends to decrease, then we should see x1 > x2 ⇒ y1 < y2

We use this to describe "discordant" and "concordant" pairs:

Definition 5.3.1 (Concordant Pairs). A pair of data points (xi , yi), (xj , yj) is said to be
concordant (in agreement) if

xi < xj ⇒ yi < yj or xi > xj ⇒ yi > yj

⇐⇒ (∆x)(∆y) = (xi − xj)(yi − yj) > 0

♠

Definition 5.3.2 (Discordant Pairs). A pair of data points (xi , yi), (xj , yj) is said to be dis-
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cordant (in disagreement) if

xi < xj ⇒ yi > yj or xi > xj ⇒ yi < yj

⇐⇒ (∆x)(∆y) = (xi − xj)(yi − yj) < 0

♠

Additionally, if any pairs do not fit the definitions above, then they are "tied." This means
either xi = xj or yi = yj which implies that ∆x∆y = (xi − xj)(yi − yj) = 0.

This then implies...

• If most pairs are concordant =⇒ positive linear relationship

• If most pairs are discordant =⇒ negative linear relationship

We can use this to create a definition for "Kendall’s Tau" as a measure similar to correlation:

Definition 5.3.3 (Kendall’s Tau). The "population" value of Kendall’s Tau is

τ = (chance of concordant pairs)− (chance of discordant pairs)

= P ((Xi −Xj)(Yi − Yj) > 0)− P ((Xi −Xj)(Yi − Yj) < 0)

= P ((Xi −Xj)(Yi − Yj) > 0)− (1− P ((Xi −Xj)(Yi − Yj) > 0))

= 2P ((Xi −Xj)(Yi − Yj) > 0)− 1

Note that since the population is assumed to be continuous, P ((Xi −Xj)(Yi − Yj) = 0) = 0.
This could also be thought of as a rescaled probability of concordant pairs. ♠

Notice if all pairs are concordant, then τ = 1. If all are discordant, then τ = −1. If exactly
half are concordant and half are discordant, then τ = 0. Thus, Kendall’s Tau is mimicking
the properties of traditional correlation ρ.

Now, if we have to estimate τ , there are
(
n
2

)
total pairs (xi , xj), (yi , yj). Then, let

Ui j =


1 if (xi − xj)(yi − yj) > 0 (concordant)
√
−1 if (xi − xj)(yi − yj) = 0 (tied)

0 if (xi − xj)(yi − yj) < 0 (discordant)

Then, we define

Vi =

n∑
j=i+1

Re(Ui j) = # of concordant pairs for ith value (xi , yi)

=
∑
i<j

1(Ui j = 1)
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Notice that we start at j = i + 1 so that there we are never comparing the same pair. For the
same reason, i ∈ {1, ..., n − 1}. The sample version of Kendall’s Tau rτ is then given by a
very similar form as with the population; probabilities turn into sample proporitions:

Definition 5.3.4 (Sample Kendall’s Tau). The sampled estimate of Kendall’s Tau is given by

rτ = (prop. concordant pairs, no ties)− (prop. discordant pairs, no ties)

=

∑
i<j 1(Ui j = 1)−

∑
i<j 1(Ui j = 0)(

n
2

)
−
∑

i<j 1(Ui j =
√
−1)

=
2[
∑

i<j 1(Ui j = 1)]− [
(
n
2

)
−
∑

i<j 1(Ui j =
√
−1)](

n
2

)
−
∑

i<j 1(Ui j =
√
−1)

=
2
[∑n−1

i=1 Vi

]
(
n
2

)
−
∑

i<j 1(Ui j =
√
−1)

− 1

≈
2
[∑n−1

i=1 Vi

]
(
n
2

) − 1 (ties are rare)

Note: The definition given above is useful for computation, a precise definition (given by [6])
of rτ is

rτ = (number of concordant pairs)− (number of discordant pairs)

=
1(
n
2

)∑
i<j

sgn(xi − xj)sgn(yi − yj)

where

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

but it is not practical. ♠
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5.4 Appendix (Week 5)

5.4.1 Sample Correlation Coefficient’s Distribution
We now derive an approximation of the sampling distribution of r under H0 or β1 = 0. Note
that in simple linear regression, it can be shown

β̂1

√∑
(xi − x̄)2

s
= r

√
n − 2

1− r 2
∼ t[n−2]

If we set X = r
√

n−2
1−r2 , then we can see that a distribution function for X can be obtained

using a transformation of variables, i.e. we use the equation f (x)dx = f (r)dr to find f (r),
the density function. If we do this, we find that (see [8])

f (r) =
1√
π

Γ(ν+1
2

)

Γ(ν
2

)
(1− r 2)

ν−2
2

where ν = n − 2. This is the true sampling distribution for the sample correlation coefficient;
note r ∈ [0, 2]. Because r 2 is symmetric about 0, so is f (r) and likewise, E(r) = 0. We now
derive the variance of r :

Proposition 5.4.1 (Variance of r). The variance of the sampling distribution of the correlation
coefficent is

V (r) =
1

n − 1

Proof. For brevity, we set

A =
1√
π

Γ(ν+1
2

)

Γ(ν
2

)

Using the definition of variance, we see:

V (r) = A

∫ 1

0

(r − 0)2(1− r 2)
(ν−2)

2 dr

= A

∫ 1

0

u(1− u)
ν−2

2

2
√
u

du (u = r 2 ⇒ du = 2rdr)

= A

∫ 1

0

u1/2(1− u)
ν−2

2 du

= A

∫ 1

0

u(3/2)−1(1− u)(ν/2)−1du

Notice the last equation is the area under the beta function where α = 3/2 and β = ν/2. We
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can then compute the integral as

= A
Γ(3/2)Γ(ν/2)

Γ(ν+3
2

)

=
1√
π

Γ(ν+1
2

)

Γ(ν/2)
×

Γ(3/2)Γ(ν/2)

Γ(ν+3
2

)
(substitute value of A)

=
1√
π

Γ(3/2)
ν+1

2

=
1√
π

√
π

2

2

ν + 1

(
Γ(3/2) =

√
π

2

)
=

1

n − 1
(ν = n − 2)

Hence, V (r) = 1
n−1

, as we sought to show. �

Now that we know the mean and variance of r , we can, upon inspection of it’s curve, see
that a normal distribution with the same mean and variance approximates r ’s distribution (it’s
a little below the curve, though). Hence,

r
appx∼ N(0, 1/

√
n − 1)

as we sought to show. Notice, we assumed normality of errors in the simple linear regression
to yield normality of the observed slope β̂1. In a non-parametric setting, with a large enough
sample size, any linear combination of the εi ’s will be approximately normally distributed, so
this can still hold in that setting (as long as σεi ’s are all the same).
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Chapter 6

∣∣∣∣∣ Week 6: Correlation Tests (cont.)

& Tests for Independence

6.1 Lecture 15: Hypothesis Tests for Kendall’s Tau
There are 3 types of hypothesis tests using Kendall’s τ : Exact Hypothesis Tests, Permuta-
tion Tests, and Asymptotic Approximation Tests. We now give them in the order they are
presented.

6.1.1 Exact Hypothesis Test for Tau)
The steps for conducting an exact hypothesis test for τ are as follows:

Exact Test for Kendall’s τ

Step 1: State H0 and HA

H0 HA

H0 : τ = 0 HA : τ 6= 0

H0 : τ ≤ 0 HA : τ > 0

H0 : τ ≥ 0 HA : τ < 0

Step 2: Calculate test-statistic

rτ =
2
∑n−1

i=1 Vi(
n
2

) − 1

Step 3: Calculate the p-value Similarly to Spearman’s, Kendall has an exact distribution table
for r ∗τ for n ∈ {1, ..., 10} (notice the low sample size). It gives P (r ∗τ > c) and again
P (r ∗τ < −c) = P (r ∗τ > c). The p-values for each HA are then

HA p-value
τ > 0 P (r ∗τ > rτ)

τ < 0 P (r ∗τ < rτ)

τ 6= 0 2P (r ∗τ > |rτ |)
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Step 4: Reject H0 if p-value < α F

6.1.2 Permutation Test for Tau
We follow the same procedure as in the exact test, except the only difference is in the p-value
step:

Step 3 (Permutation Test): For R > 2000 random permutations, calculate rτi For each
permutations

HA p-value
τ > 0 (#rτi ≥ rτobs)/R

τ < 0 (#rτi ≤ rτobs)/R

τ 6= 0 (#|rτi | ≥ |rτobs|)/R

where rτobs = observed Kendall’s Tau from original sample F

6.1.3 Asymptotic Approximation for Tau
The following formula can be used with or without ties in the data (for either X or Y ). First,
we note the frequency of ties with the following notation:

• Let si = # of ties for the ith tied value of X

• Let ti = # of ties for the ith tied value of Y

For example, if

X : 0 1 1 2 3 3 3 4 5 6 6
Y : 1 1 2 3 3 4 4 4 5 6 7

then,

• s1 = 2 (two values of 1)

• s2 = 3 (three values of 3)

• s3 = 2 (two values of 6)

• t1 = 2 (two 1’s)

• t2 = 2 (two 3’s)

• t3 = 3 (three 4’s)

Now, if we let

A =

∑
i si(si − 1)(2si + 5) +

∑
j tj(tj − 1)(2tj + 5)

18

B =

[∑
i si(si − 1)(2si − 2)

] [∑
j tj(tj − 1)(tj − 2)

]
9n(n − 1)(n − 2)
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and

C =

[∑
i si(si − 1)

] [∑
j tj(tj − 1)

]
2n(n − 1)

We now give some properties of these quantities:

Proposition 6.1.1 (A,B,C when no ties). When there are no ties in the data, A = B = C = 0.

Proof. Notice if there are no ties, si and ti have values of 0 for every index. This makes each
sum in the formulas for A,B, C 0. Hence, all three values are thus 0 if there are no ties. �

Proposition 6.1.2 (2 Repeated Values for Y ). If Y has ti ≤ 2, then B = 0.

Proof. If ti ≤ 2 for all i , then ti − 1 = 0 or ti − 2 = 0 depending on the value of ti . In either
case, the sum

∑
j tj(tj − 1)(tj − 2) evaluates to 0 which in turn leads to B = 0, as we sought

to show. �

Proposition 6.1.3 (Mutually Exclusive Ties). If ties exist for only one of the sets X or Y ,
then B = C = 0.

Proof. If there are only ties for one of X and Y , then only one of si or ti has 0 for every value.
This makes any sum with these quantities evaluate to 0. Since B and C have products using
these quantities, they are guaranteed to be 0 in either case. �

Now, we can prove that the variance of rτ is

V (rτ) =
4n + 10

9(n2 − n)
−

4

n2(n − 1)
(A− B − C)

and that the mean of rτ is E(rτ) = 0. We can now state the steps for this hypothesis testing
method:

Asymptotic Approximation for τ Test

Step 1: State the hypotheses

H0 HA

H0 : τ = 0 HA : τ 6= 0

H0 : τ ≤ 0 HA : τ > 0

H0 : τ ≥ 0 HA : τ < 0

Step 2: Compute the test statistic
zs =

rτ√
V (rτ)
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Step 3: Compute the p-value

HA p-value
τ > 0 P (Z > zs)

τ < 0 P (Z < zs)

τ 6= 0 2P (Z > |zs |)

Note: This is primarily used when n ≥ 30. F

Note: We now have three correlations:

• Parametric-Pearson’s: r

• Ranks-Spearman’s: rs

• Kendall’s τ : rτ N

Let’s assess the validity of non-parametric tests for correlation by an example.

Example 6.1.1 (Age & Body Fat). Age and body fat percentage were measured for 9 subjects:

Age (X) : 23 23 27 27 38 41 45 49 50
BF(Y ) : 9.5 27.9 7.8 17.18 31.4 25.9 27.4 25.2 31.1

With corresponding correlations:

r = 0.658 rs = 0.395 rτ = 0.286

Assume the claim is that body fat percentage increases with age (positive correlation).

(a) Calculate the asymptotic z-scores for all correlations and the appropriate p-values.

• Solution: For each type of test, we have

Pearson: zs = r
√

(n − 2)/(1− r 2) = 0.658
√

7/(1− 0.6582) = 2.311

Spearman: zs = rs
√
n − 1 = 0.395

√
9− 1 = 1.117

Kendall: s1 = s2 = 2 no ties in Y =⇒ B = C = 0

so A =
∑
i

si(si − 1)(2si + 5)/18 = [2(1)(4 + 5) + 2(1)(2 + 5)]/18

= 2
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and V (rτ) =
4n + 10

9(n2 − n)
−

4

n2(n − 1)
(A− B − C)

= (4(9) + 10)/(9(92 − 9))− [4/(92(9− 1))](2) ≈ 0.0586

=⇒ zs = 0.286/
√

0.0586 ≈ 1.1815

The p-values are thus:

statistic p-value
r P (Z > 2.311) ≈ 0.0104

rs P (Z > 1.117) ≈ 0.1320

rτ P (Z > 1.1815) ≈ 0.1189

(b) Compare the results. Which p-value do you believe is more appropriate?

• Solution: Since the sample size is small, asymptotic distributions may not be
accurate. But, if we have to use one, it is best not to use Pearson’s. We can see
why if we look at the plotted data:

25 30 35 40 45 50

10

15

20

25

30

Age

B
M
I

Since it does not look bivariate normal (football/ellipse shaped), Pearson’s para-
metric test is not applicable. Out of the above, use either Spearman’s Rank test
or Kendall’s Tau.

ª
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6.2 Lecture 16: More on Correlation & Contingency
Tables

6.2.1 When to use which Correlation
Some notes on which correlation test to use...

Correlation Notes

1. When there are no outliers and the distribution is approximately symmetric (but with
low sample size), use a permutation test for the slope

2. When outliers are present in the data, use Spearman’s or Kendall’s since they remove
effect of extreme values

3. Kendall and Spearman tend to have similar results, but Spearman tends to have higher
power at low sample sizes and Kendall has higher power in large sample sizes.1

N

6.2.2 Contingency Tables
A contingency table is used for two or more categorical variables and typically has the following
form:

Y

Cat 1 Cat 2 . . . Cat c
Cat 1 n11 n12 . . . n1c n1. = row total for row 1

X Cat 2 n21 n22 . . . n2c n2. = row total for row 2
...

...
...

...
...

...
Cat r nr1 . . . . . . nrc nr. = row total for row r

n.1 n.2 . . . n.c n.. = total sample size
column total 1 column total 2 . . . column total c

This data typically comes from two methods of collection:

(I) All n subjects are sampled randomly and independently so that neither row nor column
totals are known beforehand

(II) Row totals or column totals are known prior to the study and what is random is the
outcome of only one of the categorical variables

1See [4] for more information regarding power simulations
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(I) is typically the result of an observational study. For example, 100 people are sampled
and their major and gender are recorded.

(II) is used for experiments. For example, 50 subjects are randomly allocated into Drug
group vs Placebo group so that there are 25 in each group. Then, the type of improvement is
measured.

The goal with two categorical r.v’s is to see if the outcome of one effects the outcome of
another, i.e, if they are dependent or independent. Note, however, we cannot determine
causality from any categorical analysis alone.

6.2.3 Notation
Let the population or true value of the probability of being in category i of X, j of Y is pi j .
Equivalently, P (X = i , Y = j) = pi j . It then follows...

• pi . = P (X = i) = probability of being category i of X

• p.j = P (Y = j) = probability of being category j of Y

• pi |j = P (X = i |Y = j) = probability of being in category i of X, given in j of Y =

pi j/p.j

• pj |i = P (Y = j |X = i) = probability of being in category j of Y, given in i of X =

pi j/pi .

If two events A and B are independent, then

P (A,B) = P (A)P (B) ⇐⇒ P (A|B) = P (A)

For categorical r.v’s X and Y are independent, we have

pi j = pi .p.j ⇐⇒ pi |j = pi . ⇐⇒ pj |i = p.j

6.2.4 Parametric χ2 Test for Independence
Using the above notations, we can review the parametric test for independence.

Parametric χ2 Test for Independence

Step 1: State H0 and HA

H0 : Variables X, Y are independent

HA : Variables X, Y are dependent

Step 2: Calculate test-statistic

• Here we compare the counts ni j to what they should have been if the variables
were actually independent (H0 true). If they were independent we would see
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pi j = pi .p.j ⇐⇒ E(ni j) = ei j = npi .p.j where the left entry in the biconditional is
the expected count based on average based on n subjects. In practice, we’ll never
know ei j , but we can observe êi j = np̂i .p̂.j and simplification of this form gives

êi j = np̂i .p̂.j = n
(ni .
n

)(n.j
n

)
=
ni .n.j
n

=
(row total i)(row total j)

n

Notice that

êi j =
ni .
n
n.j = p̂i .n.j

⇐⇒ p̂i . =
êi j
n.j

(∀j)

i.e. the prob of being in category i should be the same no matter what column j is.
Finally, our test statistic is

χ2
[s] =

∑
i ,j

(ni j − êi j)2

êi j
df = (r − 1)(c − 1)

Which is distributed χ2
[(r−1)(c−1)] if H0 is true

Step 3: Calculate the p-value
p-value = P (χ2 ≥ χ2

[s])

F

We note some assumptions to carry out this test:

χ2 Test for Independence Assumptions

1. Random sample was taken, i.e. Xi ’s are mutually independent and Yi ’s are mutually
independent

2. êi j ≥ 5 for all i , j

Caveat: If ni j ’s have vastly different magnitudes (high variance), we may not have a χ2

distribution for χ2
[s], even if êi j ≥ 5 N
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6.3 Lecture 17: Permutation Test for Independence
Now, we give some non-parametric tests concerning independence.

6.3.1 Permutation Test for Independence

Permutation Test for Independence

Step 1: State H0 and HA

H0 : Variables X, Y are independent

HA : Variables X, Y are dependent

Step 2: Calculate the test statistic. Note, our test statistic is the same as it was for the
parametric test:

χ2
[s,obs] =

∑
i ,j

(ni j − êi j)2

êi j
df = (r − 1)(c − 1)

Step 3: Calculate the permutation p-value. The steps for the permutation p-value are as
follows:

(i) Fix either the row or column totals observed (this is an arbitrary constraint).
Then randomly assign each subject in the row into a column. (Think of only one
variate at a time Y1, ..., Yn.. (for example), we then assign the associated values of
the other variate X1, ..., Xn.. randomly assuming a uniform distribution without
replacement).

Note: We may do this because if H0 is true, then pj |i = pi .. I.e. if you are in row i
the prob of being in column j should be the same no matter what column you are
in. Thus we take the ni . values and shuffle them into all columns.

(ii) Calculate χ2
s,i for your permutation data

(iii) Repeat (i , i i) R > 2000 times

The permutation based p-value is then

(# of χ2
s,i ≥ χ2

s,obs)/R

Step 4: Reject H0 if p-value < α F

Note:

• Whether you fix the rows or the columns does not matter, they will result in the same
p-value, i.e. we yield the same permutation tables.
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• The total number of ways to shuffle the columns and fix the rows is n!/[n1.!n2.! . . . nr.!].
Similarly, the total of ways to shuffle the rows and fix the columns is n!/[n.1!n.2! . . . n.c !].
Both are equal in value. N

Example 6.3.1 (Pain Relief). Seven patients were put into two groups. Group I took over the
counter pain medications according to a doctor’s recommendation. Group II self medicated
with OTC medicine. The subject’s pain relief was rated with values S = slightly reduced, R
= reduced, and E = eliminated. The results are as follows:

S R E

I 2 2 0 n1. = 4

II 0 1 2 n2. = 3

n.1 = 2 n.2 = 3 n.3 = 2 n = 7

(a) How many permutations are there if we fix the row totals?

• Solution: 7!/[3!4!] = 35

(b) Find the observed test statistic, χ2
s,obs

• Solution: The table of the observed expected values êi j follows:

êi j S R E

I (4)(2)
7

= 8/7 (4)(3)
7

= 12/7 (4)(2)
7

= 8/7 4

II (3)(2)
7

= 6/7 (3)(3)
7

= 9/7 (3)(2)
7

= 6/7 3

2 3 2 7

=⇒ χ2
s,obs = (2− 8/7)2/(8/7) + (2− 12/7)2/(12/7) + · · ·+ (2− 6/7)2/(6/7)

= 4.278

(c) If the distribution of χ2
s,i for all possible permutations is:

χ2
s,i 0.194 2.236 4.278 4.956 7.0 total

Freq 12 12 6 4 1 35

Find the exact permutation p-value.

• Solution: Since (# of χ2
s,i ≥ 4.278) = 11, the p-value is 11/35 = 0.31.

(d) Interpret your p-value in terms of the problem

• Solution: If in reality pain relief and group were independent, we would observe
our data or more extreme 31% of the time.

(e) State your conclusion in terms of the problem
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• Solution: Since p-value > α, we fail to reject H0 and conclude there is evidence
to support that group and pain relief are independent. ª

6.3.2 Comparing Conditional Probabilities
Now, if we reject H0, we next want to identify the direction of the dependence. For example,
how does the value of X exactly depend on the value of Y ? Which values of X depend
on certain values of Y ? These are similar questions we ask when we conducted ANOVA
permutation tests.

To do this comparison, we compare pj |i−pj |i ′ (or pi |j−pi |j ′). These are known as the conditional
probabilities of i for different groups j and j ′ (or j for i and i ′).

The primary method used is similar to Tukey’s HSD but modified for proportions.

Notation Let Zj |i be the test statistic comparing j (some column) conditional on i (some
row). Then, we have

Zj |i ≡
p̂j |i − p̂j |i ′√

p̄(1− p̄)(1/ni . + 1/ni ′.)

where p̂j |i = ni j/ni ., p̂j |i ′ = ni ′j/ni ′. and p̄ = (ni j + ni ′j)/(ni . + ni ′.). Effectively, Zj |i measures
the standardized difference between two cell counts for a given column.

Now we find the permutation values we will use for our cutoffs.

Step 1: Calculate all "g" of the observed Zj |i ’s (these are the observed values we’ll need
later)

Step 2: Find a random permutation and calculate all "g" values of the Zj |i ’s based on this
permutation permutation. Then, let Qk = maxi ,j |Zj |i | and calculate Qk

Step 3: Repeat (Step 2) R > 2000 times. Then, calculate

q∗(α) = (1− α)100th percentile of all Q′is

With the cutoff value calculated, we can decide which differences are significant. To do this,
we compare Zobs

j |i to q∗(α). If Zobs
j |i > q∗(α), we conclude that the proportions used in Zobs

j |i
are significantly different.

Note: To tell what direction the dependence is after we have determined which |Zobs
j |i | > q∗(α),

we can tell by the sign of the difference between pj |i and pj |i ′.

(i) If pj |i < pj |i ′ =⇒ probability of j in group i is less than probability of j in group i ′

(ii) If pj |i > pj |i ′ =⇒ probability of j in group i is greater than probability of j in group i ′

N
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Chapter 7

∣∣∣∣∣ Week 7: Prob. Comparisons &

Bootstapping

7.1 Lecture 18: Independence & Bootstrapping (Intro)
We begin with an example about finding dependence and its direction.

Example 7.1.1 (Car Color & Gender). Color of car was compared with gender of buyer with
the following results:

R = Red S = Silver B = Black

F 2 16 3 21
M 3 2 4 9

5 18 7 30

The permutation p-value was: 0.0025.

(a) Find the estimated difference in buying each color, comparing by gender.

• Solution: A table giving the probabilities and differences is as follows:

Red Silver Black
p̂R|F = 2/21 p̂S|F = 16/21 p̂B|F = 3/21

p̂R|M = 3/9 p̂S|M = 2/9 p̂B|M = 4/9

p̂R|F − p̂B|F = −0.238 p̂S|F − p̂S|M = 0.540 p̂B|F − p̂B|M = −0.302

(b) Calculate the relevant Zj |i values

• Solution: A table giving the values is

R S B
p̄R = 5/30 p̄S = 18/30 p̄B = 7/30

ZR = −1.604 ZS = 2.769 ZB = −1.790



7.1. LECTURE 18: INDEPENDENCE & BOOTSTRAPPING (INTRO) 88

Where, for example,
p̂R|F − p̂R|M√

p̄R(1− p̄R)(1/nF + 1/nM)

was used in calculating ZR.

(c) Based off of R = 5000 permutations, the value of the cutoff is q∗(α = 0.05) = 2.114.
Which groups are significantly different and how?

• Solution: The only group that is significantly different is the silver group since
ZS = 2.769 > 2.114. Thus, the proportion of males and females who buy sil-
ver cars is different with females tending to buy silver cars more often since the
difference is positive. ª

7.1.1 Class so Far...
We have covered...

1. Single sample median, CDF, and percentiles

2. Independent two-sample tests

3. Independent k-sample tests

4. Linear Regression tests

5. Tests for Independence

Recall for tests 2-5 we used "permuting" the data in some way. When we permute data, we
resample into each group, without replacement. In other words, each observation from each
group is used exactly once.

Another method that can be used that also creates a distribution based on only one dataset
is bootstrapping. This can be used in a huge variety of tests including all of what we have
covered so far.

7.1.2 Bootstrapping
Let θ be the parameter we are interested in estimating. This could be one of the previous
statistics, such as µ, θm, a percentile, etc. Generally, we know the distribution of our estimate
and can use that to create HT and CIs.

In permutation tests, for example, we create a permutation distribution to find p-values but
not confidence intervals. However, the permutation distribution assumes the null hypothesis is
true in order to make these distributions.

Bootstrap distributions are also data driven distributions that we create from a single sample,
but do not assume a particular H0 is true since the method of distribution generation is general.
Let’s review how we would find a sampling distribution of θ̂ given infinite resources:
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1. Take a random sample from the population

2. Calculate θ̂ our sample estimate

3. Repeat (1) and (2) many, many times (ideally infinite)

This gives a sampling distribution of θ̂ since we would have many realizations of θ̂.

Of course, we don’t actually do this; it is too time consuming and intensive. But, bootstrapping
mimics this process so long as we are sure the sample we took is representative of the
population it came from.

7.1.3 Bootstrapping Sample
A bootstrap sample and a bootstrap distribution have the following steps. Assume you have a
single sample of X1, ..., Xn. Then,

1. A bootstrap sample is resampling from X1, ..., Xn with replacement. We mark these
resampled values with an asterisk: X∗1 , ..., X

∗
n is one possible bootstrap sample

2. A bootstrap estimate θ̂Bi = ϕ(X∗1 , ..., X
∗
n) is formed from your bootstrap sample, note

all X∗i ’s are mutually independent

3. Repeat (1) and (2) B times. B is typically in the 1000s

4. The B values or θ̂Bi give a bootstrap distribution

Resampling with replacement adds variation to each bootstrap sample and mimics resampling
from the population, though the values are repeated. Next, we will learn how to use this
bootstrap distribution for statistical inference and point/interval estimation.

Fun Fact: If we observe n data points withm types of numbers yieldingm empirical probabilities
p̂1, ..., p̂m. The particular bootstrap sample we generate will follow a multinomial distribution.
So, if we observe a bootstrap frequency vector (n1, ..., nm), the chance of this occurring is:

P ((N1, ..., Nk) = (n1, ..., nk)) = P (bootstrap sample) =

(
n

n1, ..., nk

)
p̂n1

1 , ..., p̂
nm
m

In addition, each bootstrap variate X∗i follows a categorical distribution C(p̂1, ..., p̂m) where
we have

X∗i =


γ1 with chance p̂1

...
...

γm with chance p̂m

where γi is the ith unique value observed in the original sample. N
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7.2 Lecture 19: Bootstrap Point/Interval Estimation

7.2.1 Estimating a Parameter
Some quantities that are often used to assess how good our estimate is are (assuming we are
allowed to resample from the population N times):

Assessing Goodness of Estimate

1. Expected Value (Average): E(θ̂) ≈ 1
N

∑
θ̂i , for large N

2. Bias: bias(θ̂) = E(θ̂ − θ) = E(θ̂)− θ

3. Variance: V (θ̂) ≈ 1
N

∑
(θ̂i − E(θ̂))2 for large N

4. Mean Squared Error (MSE): MSE(θ̂) = V (θ̂) + bias(θ̂)2

Proof. By definition: MSE(θ̂) = 1
N

∑
(θ̂i − θ)2. Manipulating this definition with the

addition and subtraction of E(θ̂) gives:

MSE(θ̂) =
1

N

∑
(θ̂i − E(θ̂) + E(θ̂)− θ)2

=
1

N

∑[
(θ̂i − E(θ̂))2 + (E(θ̂)− θ)2 + 2(θ̂i − E(θ̂)(E(θ̂)− θ)

]
=

1

N

[∑
(θ̂i − E(θ̂))2

]
+ (E(θ̂)− θ)2 + 0

(∑
(θ̂i − E(θ̂)) ≈ 0

)
= V (θ̂) + bias(θ̂)2 (by definition)

This concludes the proof.

5. Chebyshev-Markov in Equality (distribution independent):

P
(
|θ̂ − θ| ≤ k

√
MSE

)
≥ 1−

1

k2
∀k ≥ 1

Note the use of
√
MSE instead of σθ̂ for the inequality. We can do this because

MSE ≈ σ2
θ̂

= V (θ̂) assuming we use a reasonably unbiased estimator for θ. It is best to
keep the MSE rather than the variance only because in practice there will always be
bias (finite amount of samples). In the infinite case, we can disregard the bias as it is 0
for an unbiased estimator.

As a statement, the probability means that the chance that θ̂ is within k
√
MSE from θ

(in either direction) is at least 1− 1/k2. N

We can estimate all these values with a bootstrap distribution. Assume you have B∗ bootstrap
estimates of θ (ex: the sample mean). Call them θ̂B1 , ..., θ̂

B
B∗ (the superscript tells us that

these are bootstraped estimates). The corresponding bootstrap estimates of the true sampling
distribution of θ̂ are:
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Bootstrap Estimates Qualities

1. Bootstrap Expected Value: Ê(θ̂) = 1
B∗

∑B∗

i=1 θ̂
B
i

2. Bootstap Bias: ˆbias(θ̂) = Ê(θ̂− θ̂obs) = Ê(θ̂)− θ̂obs where θ̂obs = estimate from original
sample

3. Bootstap Variance: V̂ (θ̂) = 1
B∗

∑
(θ̂Bi − Ê(θ̂))2

4. Bootstrap MSE: ˆMSE = V̂ (θ̂) + ˆbias(θ̂)2

5. Bootstrap Chebyshev-Markov Inequality: For a given value k , we have

P̂
(
|θ̂ − θ| ≤ k

√
ˆMSE
)
≥ 1−

1

k2

N

None of these calculations required any known knowledge of a distribution for θ̂. This technique
can be used for any sample size as well. Notice that the standard error or estimated standard
deviation can be calculated as

ŜE(θ̂) =

√
V̂ (θ̂)

which we will use in some confidence intervals.

Example 7.2.1 (Bootstrap vs. Parametric). Let’s compare a parametric test with known
values of E(θ̂), bias(θ̂), MSE, SE(θ̂). Suppose we simulate data from a population where
µ = 37.8243, σ = 6.507154. Let the estimator be θ̂ = X̄.

A random sample of size 60 was taken with sample mean x̄ = 37.5833 standard deviation
SE(X) = 6.282.

By parametric theory X̄ should have no bias (sample was i.i.d., sometimes this isn’t always
true though) and SE(X̄) = σ̂X̄ = s/

√
n = 6.282/

√
60 = 0.81100. Based on 5000 bootstrap

samples, we find...

Ê(θ̂) = 37.57745 ˆbias(θ̂) = −0.0058767

ŜE(θ̂) = σ̂X̄ = 0.807116 ˆMSE(θ̂) = 0.65147

Notice our bootstrap SE is lower and we estimated our bias as -0.0058767. If we assume
that θ̂obs came from the bootstrap distribution since we would never have knowledge about
any parametric assumptions about the data we sampled, then we adjust θ̂obs by the bootstrap
bias:

θ̂obs − (−0.0058767) = 37.5833 + 0.0058767

= 37.58921

Thus, bootstrap is fairly competitive even when parametric assumptions hold (the estimate



7.2. LECTURE 19: BOOTSTRAP POINT/INTERVAL ESTIMATION 92

is close to the parametric (true) estimate). Notice bootstrapping assumed nothing about the
data we collected.

ª

The example gives way to a handy definition:

Definition 7.2.1 (Bias-Corrected Estimate). The bootstrap bias-corrected estimate of θ is

θ̂c = θ̂obs − ˆbias(θ̂)

♠

7.2.2 Bootstrap Confidence Intervals
There are many different types of bootstrap CIs, some of which mimic a traditional CIs while
others do not. We give 2 such intervals now:

Bootstrap CIs

1. Percentile Method

• This method is simple to implement, but only works well when the distribution is
symmetric. What "works well" is typically defined to be the realized confidence
level. (1− α)100% is the theoretical confidence level; we won’t get this level of
confidence in practice.

A (1− α)100% percentile bootstrap CI is:

– Create B bootstrap estimates. Then the CI is (θ̂Bα/2, θ̂
B
1−α/2) i.e. the

(α/2)100th and (1 − α/2)100th percentiles of the bootstrap distribution.
While this CI is easy to implement, it often has much lower coverage than
it should.

2. Empirical Bootstrap CI

• Typically when we make a CI (such as for the population mean µ), we use

P (δα/2 < θ̂ − θ < δ1−α/2) = 1− α

and we know the distribution of δ. Then, the CI is: (θ̂− δα/2, θ̂− δ1−α/2). For this
CI, we estimate the percentiles of the differences θ̂ − θ with bootstrapping. We
use these steps:

(a) Create a bootstrap sample, find θ̂Bi

(b) Find δBi = θ̂Bi − θ̂obs

(c) Repeat (a) and (b) B times to form the distribution of δ.
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The empirical bootstrap CI is then:

(θ̂obs − δα/2, θ̂
obs − δ1−α/2)

⇐⇒ (2θ̂obs − θ̂Bα/2, 2θ̂obs − θ̂B1−α/2) (δBp = θ̂Bp − θ̂obs for any percentile p)

This CI often has a higher coverage probability than the percentile method.

F
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7.3 Lecture 20: BCA Bootstrap CI

7.3.1 Bootstrap CIs continued
We give an additional method for creating a bootstrap CI.

Bias Corrected and Accelerated (BCA) Bootstrap CI
This method requires the most mathematical explanation.

First it assumes that there exists some transformation T of θ̂ such that T (θ̂) is normally
distributed. The transformation that allows this to happen is (see [5])

T (θ̂) = T (θ) + σT (θ)(Z − z0) (Z ∼ N(0, 1))

where σT (θ) =

√
V (T (θ̂)) = 1 + aT (θ). Naturally, then, this means that

E(T (θ̂)) = T (θ)− z0[1 + aT (θ)]

where z0 is some standard normal percentile.

Now if T (θ̂) is actually normally distributed, we know

P

−z1−α/2 ≤
T (θ̂)− E(T (θ̂))√

V (T (θ̂))
≤ z1−α/2

 = 1− α

=⇒ P

(
−z1−α/2 ≤

T (θ̂)− (T (θ)− z0(1 + aT (θ)))

1 + aT (θ)
≤ z1−α/2

)
= 1− α

=⇒ P

(
−z1−α/2 ≤

T (θ̂)− T (θ)

1 + aT (θ)
+ z0 ≤ z1−α/2

)
= 1− α

=⇒ P

(
T (θ̂) + z0 − z1−α/2

1− a(z0 − z1−α/2)
≤ T (θ) ≤

T (θ̂) + z0 + z1−α/2

1− a(z0 + z1−α/2)

)
= 1− α

Now, we do not actually know the distribution at θ̂ but if we were to estimate it with a
bootstrap distribution θ̂B. An assumption we make is that the bootstrap distribution is a
close approximation to the true (unknown) sampling distribution. It is then the case that
the bootstrap distribution is conditional on the point estimate we observe. Hence, we can
write the transformation for the bootstrap distribution as (see [2])

T (θ̂B) = T (θ̂) + σT (θ̂)(Z − z0)

where
σT (θ̂B) =

√
V (T (θ̂B)) = 1 + aT (θ̂)
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and
E(T (θ̂B)) = T (θ̂)− z0(1 + aT (θ̂))

If we focus on only the upper bound in the last probability statement given above, we have an
analogous statement:

P

(
T (θ̂) ≤

T (θ̂B) + z0 + z1−α/2

1− a(z0 + z1−α/2)

∣∣∣∣T (θ̂)

)
(7.3.1)

= P

T (θ̂)− E(θ̂)√
V (T (θ̂))

≤ z0 +
T (θ̂B) + z0 + z1−α/2 − T (θ̂)[1− a(z0 + z1−α/2)]

(1− a(z0 + z1−α/2))(1 + aT (θ̂))

∣∣∣∣T (θ̂)


(7.3.2)

= P

(
Z ≤ z0 +

T (θ̂B)− T (θ̂)

(1− a(z0 + z1−α/2))(1 + aT (θ̂))
+

z0 + z1−α/2[1 + aT (θ̂)]

(1− a(z0 + z1−α/2))(1 + aT (θ̂))

∣∣∣∣T (θ̂)

)
(7.3.3)

≈ P
(
Z ≤ z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)

)
(T (θ̂B) ≈ T (θ̂))

Where (7.3.2) was possible since T (θ̂) is still a random variate (we haven’t observed θ̂ yet).
In short, we have just shown:

P

(
T (θ̂) ≤

T (θ̂B) + z0 + z1−α/2

1− a(z0 + z1−α/2)

∣∣∣∣T (θ̂)

)

≈ P
(
Z ≤ z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)

)
Which implies that the upper estimate for the BCA CI is at the location u of the bootstrap
distribution where

u = F−1

θ̂B

(
Φ

(
z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)

))
and F−1

θ̂B
(·) is the quantile function of the bootstrap distribution. We use this form because

we know the transformed bootstrap is approximately normal, so we can compute a quantile
with the same area as the one given for the standard normal curve in the approximation.
Since T (θ̂B) is just transformed data, areas stay the same and we can use quantiles of θ̂B’s
distribution to get the upper bound for the CI (this is similar to what we do when we standardize
variates and then compute quantiles for the actual data, so long as the transformation is
monotonic).

Using the same process, we can show the lower bound for the CI is

l = F−1

θ̂B

(
Φ

(
z0 +

z0 − z1−α/2

1− a(z0 − z1−α/2)

))
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In practice, we can never achieve the upper and lower bounds exactly due to the discrete
nature of the bootstrap distribution. Note also that l and u are dependent on a and z0 so it
is fair to write l = l(a, z0) and u = u(z, z0). Our next task is to find what these constants
are. First, we state how we interpret them [5]:

a = acceleration constant (increases variance of trans. distn.)

z0 = bias correction constant (shifts trans. distn.)

Notice: This means we have to estimate z0 and a but we do not have to use the exact
transformation of T (θ̂). We assume it exists but never actually need to know it, although we
did give one form earlier.

• Estimating z0

– z0 is a measure of bias in the data using the median. If we think of θ̂ as the
best estimate of θ, then we can get a count of how well the bootstrap estimates
approximate θ by counting the amount of values below θ̂. Ideally, if there was no
bias, each transformed bootstrap estimate would have an equal chance (50%) of
being below T (θ̂). Hence,

Let p0 = (# of T (θ̂B) ≤ T (θ̂))/B

Since the transformation T is monotonic, we have

p0 = (# of θ̂B ≤ θ̂)/B

= proportion of bootstrap θ̂′s ≤ sample θ̂

Notice under our transformation p0 ≈ P (T (θ̂B) ≤ T (θ̂)), we normalize this
accordingly

p0 ≈ P
(
T (θ̂B)− E(T (θ̂B)) ≤ T (θ̂)− [T (θ̂)− z0(σT (θ̂B))]

)
= P

(
T (θ̂B)− E(T (θ̂B))

σT (θ̂B)

≤ z0

)
= P (Z ≤ z0)

Thus, z0 is a point such that p0 = P (Z ≤ z0). Notice, if p0 is large, then z0 is
large as well. Also, under no bias: E(T (θ̂B)) = T (θ̂).

• Estimating a

– a is a measure of skewness in the data to estimate the effect of each Xi (data)
on the distribution of we leave the ith Xi out of the data and calculate θ̂−i (the
estimate of θ without the ith Xi). This is known as jackknife resampling. Do
this for all i and calculate θ̂(−1) = mean of all θ̂−i .
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Based on bootstrap theory,

a =

∑
i(θ̂(−1) − θ̂−i)3

6
[∑

i(θ̂(−1) + θ̂−i)2
]3/2

Notice we cube the differences to keep the sign of the skew. If a = 0, then there
is symmetry in the data.

To summarize,

BCA CI =
[
F−1

θ̂B
(Φ(γ)), F−1

θ̂B
(Φ(δ))

]
where γ = z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)
, δ = z0 +

z0 − z1−α/2

1− a(z0 − z1−α/2)

This CI will be done in R in practice. On an exam, it would be given or values for z0, a would
be provided. F

Note: If a bootstrap distribution is symmetric, the CI bounds for the Percentile, Empirical,
and BCA will be similar. N

Example 7.3.1 (Interval Comparisons). Suppose data from an exponential distribution
(skewed positively) is simulated, with a population mean of 10 and standard deviation 10.
Suppose we want to estimate

1. The mean (10)

2. The median (6.9315)

3. The standard deviation (10)

Using R, The 95% CIs for all three are (with B = 10, 000:

mean median standard deviation
Percentile (8.18, 14.044) (6.360, 10.411) (6.050, 14.443)
Empirical (7.766, 13.627) (5.795, 9.846) (7.329, 15.722)
BCA (8.535, 14.700) (6.413, 10.411) (7.480, 15.572)

Ideally, since the CI level is the same, the best intervals have a smaller width (difference
between upper bound and lower bound). Out of the ones given, which are best?

Note: We can use these boot-strapping methods to find estimates for any θ based off of a
single sample so long as an estimator based off of the data we have is known for it. ª
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Chapter 8

∣∣∣∣∣ Week 8: Bootstrap "t" Interval

8.1 Lecture 21: Bootstrap "t" Interval

8.1.1 General Method
Some bootstrap CIs use the parametric form as a starting point, and then modify what is
needed in the parametric assumptions are violated. In a parametric setting, we can assume

θ̂ ∼ N(E(θ̂), σ2
θ̂
)

for a single sample. A parametric CI is typically then:

θ̂ ± t1−α/2SE(θ̂)

But, if assumptions are violated, then the distribution used is not actually normal (or t). But
we can bootstrap it (create a bootstrap distribution)!

A "t" bootstrap interval has the following steps:

t Bootstrap Interval

Step 1: Find θ̂, the observed estimate

Step 2: Generate bootstrap sample

Step 3: Calculate θ̂Bi , the bootstrap estimate

Step 4: Calculate tBi = (θ̂Bi − θ̂)/ŜE
B

(θ̂)

Step 5: Repeat 2-4 B times

We now have a bootstrap distribution of tB. The "t" bootstrap CI is then:[
θ̂ − tB1−α/2SE(θ̂), θ̂ + tB1−α/2SE(θ̂)

]
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Where

tB1−α/2 = (1− α/2)100th percentile of tB

tBα/2 = (α/2)100th percentile of tB

Note: tB is a distribution with negative and positive values but not necessarily symmetric
(it’s bootstrapped, so it reflects what information the sample gives it). Also, we have only
replaced t1−α/2 and tα/2 from the parametric CI with bootstrap estimates of them. F

When to use what CI for single samples?

1. When the theoretical SE and distribution of θ̂ are known and the bootstrap distribution
is symmetric, "t" intervals tend to outperform all others

2. If the distribution is symmetric (not necessarily normal or t), then empirical CIs or BCA
CIs tend to outperform the others

3. If there is significant skew in the distribution, BCA will outperform the others

Here are some examples of when you could use a t bootstrap CI:

1. θ̂ = x̄ (sample mean) since X̄ ∼ N
(
µ, σ/

√
n
)

2. θ̂ = p̂ (sample proportion) since p̂ ∼ N
(
p,
√
p(1− p)/n

)
8.1.2 Bootstrapping with Two Samples
When we have two samples, we need to adjust how we create a bootstrap sample. First,
we will look at the empirical, percentile, and BCA methods. Before we discuss the interval
method, we give some notation:

Notation: Let Yi j =jth value in ith group. Let ni = # of observations in group i . Note the
bounds for i and j are i ∈ {1, 2} and j ∈ {1, 2, ..., ni}.

To form a bootstrap sample we follow these steps:

2-sample t Bootstrap CI Method

Step 1 Calculate θ̂ from your sample. Examples of θ̂ could be

θ̂ = Ȳ1 − Ȳ2 θ̂ = median1 −median2 θ̂ = s1 − s2 (diff in sd. dev.)

etc...

Step 2 Resample n1 from Y11, ..., Y1n with replacement. This forms a bootstrap sample for
group l. Similarly, resample n2 from Y21, ..., Y2n with replacement.

Step 3 Calculate θ̂Bi based on the bootstrap samples
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Step 4 Repeat 2-3 B times to obtain the bootstrap distribution of θ̂Bi

F

From here, we can calculate empirical and percentile CIs as usual (same forms as before). But,
when we calculate "a" in the BCA CI, we need to adjust how we "leave one out" (conduct
jackknife sampling).

Jackknife Correction for 2-samples: To "leave one out" we treat all n1 + n2 observations
as one group and leave out one at a time. This means one of the groups sample size changes,
but not both. We pool the samples essentially.

8.1.3 "t" Method for Two Samples

When θ̂ has a known distribution and SE (for example with θ̂ = Ȳ1 − Ȳ2) we can also use the
t-bootstrap CIs as an approximation to the CI derived from the following test statistic

Zs =
(Ȳ1 − Ȳ2)− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

=
ε̄1 − ε̄2√

σ2
ε1
/n1 + σ2

ε2
/n2

Where ε̄i = Ȳi − µi and are referred to as the "average errors." The test statistic involving
only the errors is known as the centered test statistic since we centered each group by
subtracting the sample averages with the mean. Notice σ2

i = σ2
εi
since the transformation

Ȳi − µi 7→ ε̄i only shifts the data uniformly, keeping variance the same. Now, in order to
estimate a ts from bootstrapping we need to estimate σ2

1, σ
2
2, ε̄1, and ε̄2. If we set

εi j = Yi j − µi

it then follows that we can estimate this quantity with ei j = Yi j − Ȳi and we naturally get

ēi =
1

ni

∑
j

ei j =
1

ni

∑
j

[Yi j − Ȳi ]
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For the variance, we note

σ2
i ≈ s2

i =
1

ni − 1

∑
j

(Yi j − Ȳi)2

=
1

ni − 1

∑
j

([Yi j − µi ]− [Ȳi − µi ])2

=
1

ni − 1

∑
j

(εi j − ε̄i)2

≈
1

ni − 1

∑
j

(ei j − ēi)2 = s2
ei

(ε̄i ≈ ēi , εi j ≈ ei j)

We then estimate our test statistic with

te =
ē1 − ē2√

s2
e1
/n1 + s2

e2
/n2

Note: ēi = 0 for our observed sample but for all bootstrapped samples ē∗i 6= 0 since it is now:

ē∗i =
1

ni

∑
j

(Yi j − Ȳi)B

So our bootstrap procedure is:

t Method for 2-samples

Step 1 Calculate all residuals ei j = Yi j − Yi

Step 2 Create bootstrap samples of the residuals of the data, resampling within groups only

Step 3 Calculate

tBe,i =
ē∗1 − ē∗2√

s2
e∗1
/n1 + s2

e∗2
/n2

based on bootstap sample

Step 4 Repeat 2-3 B times to obtain the bootstrap distribution

Our CI is then:[
(Ȳ1 − Ȳ2)− tB1−α/2

√
s2

1/n1 + s2
2/n2, (Ȳ1 − Ȳ2)− tBα/2

√
s2

1/n1 + s2
2/n2

]
F
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Chapter 9

∣∣∣∣∣ Week 9: Interval Comparisons &

KNN

9.1 Lecture 22: Interval Comparisons
We begin with an example that demonstrates multiple CIs and gives when to use which one.

Example 9.1.1 (Cattle Weight Gain). The average daily weight gain in pounds for cattle
based on two diets "A" and "B" are as follows:

A: 1.40 1.23 1.02 0.98 1.34 1.36 1.15 1.27
B: 1.16 0.99 1.04 1.02 1.09 1.12 0.76 0.88

With summary statistics

A B
mean 1.22 1.01

std. dev. 0.156 0.132
size 8 8

(a) Why might we consider a non-parametric technique?

• Solution: The sample size is small and there is no reason to believe that the
populations are normal (hard to assess normality).

(b) Name three non-parametric techniques we could use to determine if group A tends to
be larger than group B.

• Solution: We could use...

1. Permutation test

2. WRS/MW

3. Bootstrapping

(c) Calculate the 95% bootstrap intervals for the difference in means (µA − µB)
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• Solution: The 95% bootstrap confidence intervals are as follows:

CI
Percentile (0.0787, 0.3438)

BCA (0.0794, 0.3500)
"t" (0.0583, 0.3698)

(d) Calculate the widths and center for each CI

• Solution: Note that we define the width and center for a CI as

Width = (Length of Interval) = (upper bound - lower bound)

Center = (Midpoint of Interval) = (upper bound + lower bound)/2

This gives...

Percentile BCA t

Widths: 0.2651 0.2706 0.3115
Center: 0.2135 0.2147 0.2140

If all CIs were appropriate, we could potentially use the widths to pick the best
one. Smaller width =⇒ better interval. Notice that unlike most CIs, these are
not centered about the sample estimates ȲA − ȲB = 1.22− 1.01 = 0.21

ª

9.1.1 When to use what type of CI
Some guidelines for choosing which Bootstrap CI to use:

1. Unless your bootstrap distribution of looks perfectly symmetric, using the percentile
method is not generally suggested. This is because even in the presence of slight skew,
the actual confidence level is often > (1− α)100% (more area coverage)

2. When the bootstrap distribution is approximately symmetric, the empirical distribution
performs well

3. If skew exists in the bootstrap distribution, the BCA method is preferred since it is
designed for those cases

4. If the distribution of is known (close to t or normal), a "t" method may be preferred
(bootstrapped t-percentiles are close to actual t-percentiles)

Note: The main problem with bootstrapping is that the type of sample will heavily effect the
estimates, CIs, etc... While this is true for most statistical tests, it is especially true for both
permutation and bootstrap CIs/Tests. N
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9.2 Lecture 23: K-Nearest Neighbors (KNN)

9.2.1 K-Nearest Neighbors
This is a "machine learning" technique that is focused on prediction of Y (either continuous or
categorical) based on one or more X variables (typically continuous). Prediction can certainly
be done with parametric modeling such as logistic or linear regression, but they can be viewed
as having some problems:

1. Traditional (parametric) models typically do not outperform "machine learning" tech-
niques. This is because traditional models have a strict framework and can have goals
other than prediction. For example, traditional models could want to explain how X

effects Y , rather than focus on prediction only.

2. Traditional models do not work for all types of data. If your data trend does not
match your model, then your model will not perform well. Some data can’t be put in a
parametric setting because we lack information, so any parametric model will naturally
not work well as assumptions are likely violated.

3. When sample sizes are large, X̄ has a small SE and thus statistically all variables are
significant. They may not be practically significant on their own, however.

K-Nearest Neighbors (KNN) can be used without a model assumption. There are very little
assumptions in general and it is very good at prediction. We do assume a random sample was
taken, though. We do not, however, get any information on how X affects Y .

KNN Set-up

Assume all X’s are numerical. For example,

Y = Netflix Ratings

X = Previous Ratings, Previous Customer’s Ratings

Y = House Price

X = Square Footage, Acres, Bedrooms, Distance to major highway, etc...

Y = Cell phones sold per month

X = price of phone, screen size, memory, camera quality, etc...

We need (as usual) a dataset D = {(xi , yi) : i = 1, ..., p}. Our aim is to predict one new
variate we recently sampled given only one of the X’s and Y ’s. I.e. predict a new house price
given a new square footage. We give some notation:
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Notation: Let x∗j be the new data, with y ∗j unknown. Then, we set

Di j = measure of the "distance" between xi , x∗j ∀i ∈ {1, ..., n},∀j ∈ {1, ..., n∗}

where

n = sample size of "known" data

n∗ = sample size of "unknown" y ∗j ’s

The main idea behind KNN is "use the K closest" known data points (xi , yi)’s to predict our
unknown y ∗j . When Y is continuous, we would use the average of the nearest K to predict a
new y ∗j , call it y

pred
j . F

Example 9.2.1 (Weight vs. Height). Say we want to predict the weight of a subject based
on their height. We have the following data:

Height: 64.5 73.3 68.8 65 69 64.5 66 66.3 68.8 64.5
Weight: 118 143 172 147 146 138 175 134 172 118

Di j : 2.5 6.3 1.8 2.0 2.0 2.5 1.0 0.7 1.8 2.5

Our x∗j = 67 and we want to predict y ∗j . Define Di j = |xi − x∗j | (absolute difference).

Let’s say we want to use just one nearest neighbors. This would be the (xi , yi) with the
lowest Di j or (xi , yi) such that mini ,j(Di j) is achieved, which is (134, 66.3) which implies
y pred
j = 134.

If we use the two nearest neighbors, we have the two smallest pairs of points with the
lowest distance as (134, 66.3) and (175, 66) which implies (since weight is continuous) y pred

j =

(175 + 134)/2 = 154.

In summary, for different K’s we have

K 1 2 3 4 5 6 7 8 9 10
y pred
j 134 154 160.33 163.25 160 157.67 154.8 150.25 146.67 146.3

Notice that K has a very strong effect on what y pred
j is. ª

Some Questions

1. What if multiple Di j are tied?

• Remedy: You may either randomly select one to be the neighbor or increase K
and use all of them

2. What if Y is categorical?

• Remedy: Use the highest probability out of all neighbors
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3. What distance should we use?

• Remedy: There are two very common measures, if we let there be c predictors,
then each observation is really (~xi , yi) and a new observation is ~x∗j . Our aim is to
minimize the distance between ~xi and ~x∗j and we can do this using vector norms:

– Euclidean: Di j = ||~xi − ~x∗j ||2

– Manhattan: Di j = ||~xi − ~x∗j ||1

We end with an example of using the nearest neighbor approach on categorical data:

Example 9.2.2 (Categorical KNN). Suppose a plot of our data looks like:

1 2 3 4 5

1

2

3

X1

X
2

Cat 1 Cat 2

Where Y = ◦,× are the two categorical values Y can take. Then...

• If k = 1, the nearest to N is an × =⇒ y pred
j = ×

• If k = 2, the nearest to N is ×,× =⇒ y pred
j = ×

• If k = 3, the nearest to N is ×,×, ◦ =⇒ y pred
j = ×

• If k = 4, the nearest to N is ×,×, ◦, ◦ =⇒ y pred
j = ×, ◦ with 50% chance of either ª
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Chapter 10

∣∣∣∣∣ Week 10: KNN (cont.)

10.1 Lecture 24: More KNN & CV

10.1.1 KNN (cont.)
Notice the K with the most volatility in prediction is K = 1 (one neighbor). This means that
y pred
j is subject to change the most when we predict with only one neighbor. On the other
hand, the K with the least volatility is K = n, but will always predict a new observation as ȳ ,
(the sample mean for Y ). Notice, if our prediction always changes for new measurements,
then it does not effectively measure the relationship between the predictor and response. If
the prediction is always the same, then we still haven’t captured the true relationship between
X and Y as we ignore any variability. So, we need a K that is in between the two. How do
we pick that K?

10.1.2 Cross Validation
In practice, we are highly interested in how well our model predicts new Y values. While we
have some ways to this, we ideally could have some new data to test our model.

Cross validation can be used to see how well our data would do in predicting new data, and it
is an extension of "leave one out" (jackknife) methods.

10.1.3 f-fold-CV
The idea is relatively simple. To pick the best K for many values of K we split our data
(randomly) into f parts. The process is:

f-Fold-CV Process

Say f = 10. We "leave out" 1/10 of the data, and use KNN with the remaining (9/10)’s of
the data to predict the (1/10)th we left out. Repeat this for every (1/10)th of the data we
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left out. We then have

yi = original value of y

ŷCVi = predicted yi using CV

For all i ∈ {1, ..., n}. F

The overall CV error is then:

Overall CV Error
n∑
i=1

(
yi − ŷCVi

)2

F

And a comparative measure to see if we did any better than ȳ is PRECV:

PRECV =

∑
(yi − ȳ)2 −

∑
(yi − ŷCVi )2∑

(yi − ȳ)2

= proportion of reduction in error when using

our current technique instead of ȳ based on CV

Note: PRECV is used for continuous Y N

The benefit is that the model the (9/10)ths of the data was fit on has no association with
the (1/10)th we left out. This gives a better measure of how our model may behave with
"new" data.

Remark 10.1.1. CV can be useful in assessing competing "best" models in model selection in
techniques or when trying to pick between various other techniques (such as using KNN) �

10.1.4 Error for Categorical Y
When we use KNN with categorical Y we don’t have a numeric ŷ and y to calculate PRECV .
But, we do have an alternative... If we let y = a1, a2, ..., ac be the varying categories for
y . Then, we have ŷ = ai where ai is the category with the highest chance as the predicted
category. The error matrix for our y predictions would then be:
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Error Matrix (E)

ŷ = a1 . . . ŷ = ac

y = a1 n11 . . . n1c r1 = true total in category a1
...

... . . . ...
...

y = ac nc1 . . . ncc rc = true total in category ac

c1 . . . cc n = sample size
pred. total in cat. a1 . . . pred. total in cat. ac

F

Ideally, in the matrix above we would like the trace (diagonal sum) to be the largest (close to
n). So, one measure of the overall error rate would be

Overall Error =
n − trace(E)

n
=
n −

∑
ni i

n

The overall rate (proportion) of correct predictions would then be: Correct = 1 - (Overall
Error). When c = 2 (i.e. y has two categories or is binary), we often have more specific error
rates.

10.1.5 Errors for Two Categories
For notation, we let y = 1 mean subject has trait and y = 0 mean subject does not have
trait. The simplified error matrix is then:

ŷ = 1 ŷ = 0

y = 1 n11 n12

y = 0 n21 n22

where the constraints are

ni j ∈ {0, ..., n} ∀i , j ∈ {1, 2}∑
i ,j

ni j = n

i.e. everything sums up to sample size and each entry is no more than the sample size. We
then further calculate:

1. Sensitivity = P (pred. success|true success) = P (ŷ = 1|y = 1) = (n11)/(n11 + n12)

2. Specificity = P (pred. fail|true fail) = P (ŷ = 0|y = 0) = (n22)/(n21 + n22)

3. P (Correct) = (n11 + n22)/n
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4. P (Not Correct) = 1− P (Correct)

Of course, since ŷ depends on K we would use CV and pick the lowest misclassification rate.
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