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I

About/Usage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

About this Book
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These are some notes Christiana Drake took about STA131B typeset by Ramneek Narayan
after he completed the course. They aim to be easy to read and provide more precision in
content. If there are any typos, let the writers know, we appreciate it.

How to use this Book
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book was written with the student in mind and comes with colored environments to
make reading easier. In addition, at the end of each environment are symbols used conclude
the environment (show that it is completed); they are there for organization and for your
ease of reading. We list the environments below for clarity:

Example = Red Violet concludes with ’ª’

Remark = Teal concludes with ’♦’

Definition = Lime Green concludes with ’¨’

Theorem = Royal Purple concludes with ’□’

Proposition = Mulberry concludes with ’□’

Lemma = Goldenrod concludes with ’□’

Note = Orange concludes with ’∞’

Corollary = Melon concludes with ’□’

Emphasis = Royal Blue concludes with ’K’

Extra = Gray has no symbol to conclude



HOW TO USE THIS BOOK II

Read at your own pace and if anything doesn’t make sense, argue with the instructor (this
is how we make more knowledge)! It makes sense at the end if nothing comes to the mind
immediately. We hope you enjoy reading it!



III

Overview of STA131B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

"Statistics is the art and science of gathering, modeling and making inference
from data."

What you need to know to succeed in this course
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to do well in this course, it will help if you are familiar with...

1. Basic probability

– if A = event, then 0 ≤ P (A) ≤ 1 for every A ⊂ S

– For A1, A2 disjoint events: P (A1 ∪ A2) = P (A1) + P (A2) and P (A1 ∩ A2) = ∅

– P (S) = 1 and P (∅) = 0

2. Conditional probability (including Bayes’ Theorem)

– P (A|B) = P (A∩B)
P (B)

– P (A ∩ B) = P (A)P (B) or P (A|B) = P (A)

3. Random variables and probability distributions...

• Discrete and continuous random variables

• Probability mass function and density function

• Cumulative distribution function

• Univariate and bivariate distributions

• Marginal distributions and bivariate distributions

• Functions of one or more random variables

4. Mathematical expectation...



WHAT YOU WILL KNOW BY THE END OF THIS COURSE IV

• Mean, variance and other moments

• Marginal and conditional moments

5. (Strong/Weak) Law of Large numbers and Central Limit Theorem

– Weak Law of Large Numbers: If X1, X2, ..., Xn is a sequence of i.i.d random
variables, then X P−→ µ as n →∞ or limn→∞ P (|Xn − µ| ≥ ϵ) = 0.

6. Special distributions...

• Bernoulli, Binomial and Hypergeometric distribution

• Poisson and Negative Binomial distribution

• Normal distribution

• Gamma distribution (including exponential)

• Beta distributions (including uniform)

• Bivariate Normal and Multinomial distribution

7. Transformation of variables

• Univariate transformation and probability integral transformation

– Probability Integral Transform: If X ∼ F , then Y = ϕ(X) ∼ U

• Bivariate transformation of variables

K

What you will know by the end of this course
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The focus in this course will be on principles of estimation and hypothesis testing.

1. General concepts in estimation...

• Bayes’ Estimators

• Method of Maximum Likelihood (MLE’s)

• Sufficient Statistics

2. Distributional properties of estimators

• The sampling distribution of a statistic

• the t-distribution and χ2 distribution in estimation

• Calculating and interpreting confidence intervals



WHAT YOU WILL KNOW BY THE END OF THIS COURSE V

• Unbiased estimation and Fisher information

• Bayesian inference

3. Hypothesis testing

• Simple hypothesis; type I and type II error and most powerful tests

– Simple Hypothesis: H0 : µ = µ0 vs. HA : µ = µ1

• Composite hypothesis and uniformly most powerful tests

• Likelihood ratio test

• p-values

• t-tests

• F -tests

• Relationship between a hypothesis test and a confidence interval

• Bayes’ procedures in hypothesis testing

K

Note: For this class, the tools we will be using are mathematics and probability (131A and its
prerequisites are required for 131B). Pioneers of modern statistics include K. Pearson, R.A.
Fisher, J. Neyman. ∞

Below is a visual depiction of the general statistical framework:

Real World
Data Generation

(Random Samples,
Experiments)

Statistical Mod-
eling: Collecting
Data/Parameters

Stat. InferenceEstimation/Testing

Prediction, under-
standing, insights,

conclusions



WHAT YOU WILL KNOW BY THE END OF THIS COURSE VI

In this course we outline statistics as follows:

Statistical Inference

Estimation

Point
Estimation

Obtain est. θ̂ for
θ ∈ Ω, given data

Interval
Estimation

Obtain CI
for θ

Testing

H0 : θ ∈ Ω0 vs. HA : θ ̸∈ Ω0

Outline of statistics
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Chapter 1 — Inference: Estimation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Probability vs. Statistics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin by discussing the difference between probability and statistics. Both are different,
though related, fields and require different ways of interpretation. We use a simple coin-flip
example to show probability and its aims. We will record the set of outcomes as S = {H,T}
for clarity.

Probabilist View

1. If the coin is fair, then

P (H) = P (T ) =
1

2

2. If we set X = # of heads in 10 flips, then

X ∼ Bin(n = 10, p = 1/2)

3. If we set Y = # of flips until (before) first heads, then

Y ∼ Geometric(p = 1/2)

i.e.

p.m.f. P (Y = y |p = 1/2) =
(
1

2

)y+1
4. If we set T = # of tails until (before) 10 heads, then

T ∼ NegBin(r = 10, p = 1/2)

and its p.m.f is described by

P (T = t|r = 10, p = 1/2) =

{(
10+t−1
t

) (
1
2

)10+t ∀t ∈ N
0 o.w.
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The probabilist view uses these probability models to build probabilities of interest. K

Now be discuss the methods of a statistical model:

1.1.1 Statistical Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a statistical model, we set

X = outcome of some experiment E

Now E could be flipping a coin once, a fixed number of times, or until the first occasion of
some event of interest and the question is: is the coin fair? The statistician asks whether
the coin is fair and how to reasonably answer that question using probabilisitic methods.

To do this, the statistician creates a model/experiment to answer the question about the coin.
For the above, there are several approaches to obtaining data to answer that question and
each approach has a somewhat different probability model. We give now the steps toward
making a statistical model:

Steps to Make a Statistical Model

1. Identify the random variables of interest: X, Y, Z, &etc... from before

2. Specify the joint distribution or family of joint distributions

3. Identify the parameters of interest (both known and unknown)

4. (Possibly) Set θ = unknown parameter as fixed but unknown or random and create
a probability distribution for θ. If either case, we consider the distribution of X as
conditional on θ or X|θ that describes behavior of phenomenon

K

Example 1.1.1 (Statistical Modeling).

1. Suppose X1, X2, ..., Xn
i id∼ Exp(λ) and specify the times until failures of tires. We know

f (xi) = λe
−λxi

then the joint distribution becomes

f (x1, x2, ..., xn|λ) =
∏
i

f (xi) = λ
neλ

∑
i xi
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2. Suppose X1, ..., Xn = # of heads in 10 flips of a coin, then

Xi ∼ Bin(n = 10, p)

and the joint distribution is

f (x1, ..., xn|p) =
∏
i

f (xi) =
∏
i

(
10

xi

)
(p)xi (1− p)10−xi

3. Suppose X1, ..., Xn
i id∼ N (µ, σ2) where θ = (µ, σ2) are unknown. Then, the joint

distribution is

f (x1, ..., xn|µ, σ2) =
∏
i

f (xi) =

n∏
i=1

1√
2πσ2

exp

{
−
1

2

(
xi − µ
σ

)2}

ª

Generally we denote a model parameter by θ as seen in the example above and the distribution
by P and the random observable (or possibly hypothetically observable) by X. Before moving
on, we give one definition of the set of values a parameter θ can take.

Definition 1.1.1 (Parameter Space). A parameter space Ω is the set of all possible values
a parameter θ can take.

¨

In summary then, the components to a statistical model are:

1. X = random quantity

2. P = probability model (distribution) indexed by parameter θ

3. Ω = parameter space of possible parameter values

More formally and succinctly, we can specify a statistical model as

Definition 1.1.2 (Statistical Model). A statistical model consists of random variables fol-
lowing some distribution under a parameter belonging to some set, i.e.

X1, ..., Xn
i id∼ (Pθ : θ ∈ Ω)

¨

These can be seen already in the examples we have given:
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Example 1.1.2 (Identifying Statistical Models).

1. Exponential Model

• P = exponential distribution

• θ = λ (usually generic parameter rate)

• Ω = (0,∞)

2. Binomial Model

• P = binomial distribution

• θ = p

• Ω = [0, 1]

3. Normal Model

• P = family of normal distributions

• θ = (µ, σ) or (µ, σ2)

• µ ∈ (−∞,∞) and σ2 ∈ (0,∞) hence,

Ω = (−∞,∞)× (0,∞)

ª

1.1.2 Statistical Inference
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now that we know about models, we can start answering some of the questions they are
about. We call these statistical inferences. More formally,

Definition 1.1.3 (Statistical Inference). A statistical inference is a procedure that results
in a probabilistic statement about some or all parts of a statistical model.

¨

Note: In this class, we will be concerned with parametric inference, i.e. a model with a
known distribution family Pθ indexed by an unknown parameter θ. We can also assume the
family is unknown but this would be a non-parametric setting. ∞

So, what are some problems statistical inference can solve? We give some below:
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Classification of Problems

• Prediction: Machine Learning

• Statistical Decision Problems: Estimation and Testing

• Experimental Design: note that the book talks about this in classical design situation
but you can also think of it in cases of observational data as well

• Other Types...

K

Remark 1.1.1. We will study MLE first, then bayesian inference. This is 7.5-6 first in the
book, then 7.2-4 later.

♦

1.2 Method of Maximum Likelihood Estimation (MLE)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before discussing the MLE method, we give a precise definition of a statistic. You may have
heard of them in previous classes as anything that can be computed given the data. We use
this idea to create a concise definition of a statistic:

Definition 1.2.1 (Statistic). A statistic is a real-valued function of the data X1, ..., Xn noted
as

T = φ(X1, ..., Xn)︸ ︷︷ ︸
observable

¨

Example 1.2.1 (Common Statistics). Some statistics that are common in statistics are:

1. Sample mean: X̄

2. Sample maximum: X(n) = max{X1, ..., Xn}

3. Sample variance: σ̂2

4. (Just for fun) Arbitrary function: φ(X1, ..., Xn) = 3

Basically we can think of a statistic as a function of sample values that have no unknown
parameters.

ª
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With this definition in mind, we can now study the MLE since it is (as you will see) a statistic
as well. In practice, we rarely know the distribution parameter θ in advance, so it is useful to
make a "best guess". To do this, we begin with the concept of a likelihood function which
measures how likely a given value of a parameter θ is given observed our data.

Definition 1.2.2 (Likelihood Function). Let X1, ..., Xn
i id∼ Pθ with joint p.d.f (or p.m.f)

f (x1, ..., xn|θ) =
n∏
i=1

f (xi |θ)

where we assume θ is unknown. When viewed as a function of θ for a fixed set of data points,
the joint p.d.f/p.m.f is known as the likelihood function:

L(θ|x1, ..., xn) ∼F
n∏
i=1

f (xi |θ) (Likelihood Function)

where ∼F means "has the same form as". Note, however, f (x1, ..., xn|θ) and L(θ|x1, ..., xn)
are different objects. One describes the chance of observing the data for a given θ but the
other describes the chance of observing θ given that the data is already observed.

¨

Note: Although ∫
Ω

L(θ|x1, ..., xn)dθ = 1

not always, we can regularize L to give L′ such that

L′(θ|x1, ..., xn) =
L(θ|x1, ..., xn)∫

Ω
L(θ|x1, ..., xn)dθ

note that this is a monotone transform (mapping). ∞

Example 1.2.2 (Exponential Likelihood). Suppose X1, ..., Xn
i id∼ Exp(λ) then the joint distri-

bution of the data is written as

f (x1, ..., xn|λ) =
n∏
i=1

f (xi |λ)

Now, f (xi |λ) = λe−λxi and this makes the joint p.d.f as

f (x1, ..., xn|λ) =
n∏
i=1

λe−λxi = λne−λ
∑
xi
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and hence
L(λ|x1, ..., xn) = λne−λ

∑
xi

ª

Now that we know what the likelihood is, we can define the MLE or θ̂MLE:

Definition 1.2.3 (MLE). The MLE or θ̂MLE is the value of θ such that the likelihood
L(θ|x1, ..., xn) is a maximum. Note, this is the mode of the regularized likelihood function L′.
We can write this as

θ̂MLE = argmax
θ∈Ω

L(θ|x1, ..., xn)

¨

In practice, it is intractable to work with the likelihood function itself, so we take the natural
logarithm of it and call it the log-likelihood that is

log(L(θ|x1, ..., xn)) = ℓ(θ|x1, ..., xn)

Note: Since the logarithm is a monotone transform (mapping), the maximum argument of
L(θ|x1, ..., xn) is the same maximum argument as that of ℓ(θ|x1, ..., xn). Hence,

θ̂MLE = argmax
θ∈Ω

L(θ|x1, ..., xn) = argmax
θ∈Ω

ℓ(θ|x1, ..., xn)

∞

The MLE can be thought of as an estimator in the sense that it has the potential or use of
estimating the true value of the parameter θ ∈ Ω. In general, we define an estimator as

Definition 1.2.4 (Estimator). An estimator δ(X1, ..., Xn) is any random statistic contained
in the parameter space. In other words if

δ(X1, ..., Xn) ∈ Ω (Ω = parameter space)

then, δ(X1, ..., Xn) is an estimator of θ. Note that δ is a function such that δ : X1, ..., Xn → Ω.

¨

We then obtain a proposition about the MLE:

Proposition 1.2.1 (MLE is an Estimator). The MLE is an estimator of θ.

Proof. Note that for L and ℓ the domain is Ω by definition. It then follows (if we assume
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the data is unobserved) that

θ̂MLE = argmax
θ∈Ω

L(θ|X1, ..., Xn)

= argmax
θ∈Ω

ℓ(θ|X1, ..., Xn)

= δ(X1, ..., Xn)

as we sought to show. □

Concept Note: The unobserved MLE is an estimator. Once, we collect the data, the
observed MLE is called an estimate. In symbols,

θ̂MLE(X1, ..., Xn) = estimator

θ̂MLE(x1, ..., xn) = estimate

∞

How to find MLE

1. Brute force: use a search algorithm to find the maximum of the function. We could
also use a graphical procedure too.

2. Often we can use calculus

K

Example 1.2.3 (MLE of Exponential). Suppose X1, ..., Xn
i id∼ Exp(λ). Then, we know from

Exponential Likelihood the form of the likelihood function is

L(λ|x1, ..., xn) = λne−λ
∑
xi

We can make a log-likelihood out of this

ℓ(λ|x1, ..., xn) = n log(λ)− λ
n∑
i=1

xi
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Since this is a smooth function, we use calculus to find the maximum via derivatives

dℓ(λ)

dλ
=
n

λ
−

n∑
i=1

xi = 0

⇒
n

λ
=

n∑
i=1

xi

⇒ λ̂MLE =
n∑n
i=1 xi

= 1/x̄

ª

Note: We can verify an extreme value as an MLE by taking the 2nd derivative and performing
the second derivative test. ∞

We now give two more examples of computing the MLE using the Bernoulli and Normal
Distributions.

Example 1.2.4 (Sampling from Bernoulli). Suppose X1, ..., Xn
i id∼ Bernoulli(p). Then,

P (X = x) = px(1− p)1−x

and the likelihood becomes

L(p|x1, ..., xn) =
n∏
i=1

pxi (1− p)1−xi

= p
∑
i xi (1− p)n−

∑
i xi

=

(
p

1− p

)∑
i xi

(1− p)n

It then follows that the log-likelihood is

ℓ(p) =

(
n∑
i=1

xi

)
(log(p)− log(1− p)) + n log(1− p)
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Using calculus we find

ℓ′(p) =

∑
i xi
p
−
n −

∑
i xi

1− p = 0

=⇒
∑
i xi
p
=
n −

∑
i xi

1− p

=⇒

(
n∑
i=1

xi

)
(1− p) = np − p

n∑
i=1

xi

=⇒ p̂MLE =

∑
i xi
n
= x̄ = sample mean (proportion)

ª

Example 1.2.5 (Sampling from Normal). Suppose X1, ..., Xn
i id∼N (µ, σ2). Then, the likelihood

function is

L(µ, σ2|x1, ..., xn) =
n∏
i=1

1√
2πσ2

exp

{
−
1

2

(
xi − µ
σ

)2}
which implies that the log-likelihood is

ℓ(µ, σ2|x1, ..., xn) = −
n

2
log(2π)−

n

2
log
(
σ2
)
−
1

2σ2

(
n∑
i=1

(xi − µ)2
)

From here there are three cases for the information given about the parameters:

Case 1: (σ2 known, µ unknown) In this case we only have one variable to maximize, µ
so the maximum is found via calculus:

dℓ

dµ
=
1

2σ2
· 2

(
n∑
i=1

(xi − µ)

)
= 0

=⇒
n∑
i=1

(xi − µ) = 0

=⇒ µ̂MLE = x̄

just as we would have expected
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Case 2: (σ2 unknown, µ known) We again proceed as we did with µ:

dℓ

dσ
=

d

dσ

(
−n log(σ)−

1

2σ2

n∑
i=1

(xi − µ)2
)

= −
n

σ
+
2

2σ3

n∑
i=1

(xi − µ)2 = 0

=⇒ −
n

σ
+
1

σ3

n∑
i=1

(xi − µ)2 = 0

=⇒ σ̂2MLE =
1

n

∑
i=1

(xi − µ)2

as would have guessed

Case 3: (µ, σ2 unknown) In this case we must optimize with respect to both parameters.
We thus have to take derivatives with respect to both µ and σ and obtain the likelihood
equations (same as the ones we already computed):

∂ℓ

∂µ
=
1

σ2

n∑
i=1

(xi − µ) = 0 (1.2.1)

∂ℓ

∂σ
= −

n

σ
+
1

σ3

n∑
i=1

(xi − µ)2 = 0 (1.2.2)

From (1.2.1) we get as before

µ̂MLE = x̄ (this doesn’t involve σ2at all)

and from (1.2.2) we also get

σ̂MLE =
1

n

n∑
i=1

(xi − µ̂)2

=
1

n

n∑
i=1

(xi − x̄)2

ª

1.2.1 Bivariate Normal: Review
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a bivariate normal distribution, we assume to observed a pair of observations (X1, X2) such
that X1 ∼ N(µ1, σ21) and X2 ∼ N(µ2, σ22) and an association between X1 and X2 can exist
or Cov(X1, X2) ̸= 0 possibly. The context of the bivariate distribution has to do with linear
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regression1. If we consider this context, then the joint distribution between X1 and X2, we
can be written it as

(X1, X2) ∼ BVN(µ⃗,Σ)

where

µ⃗ =

(
µ1
µ2

)
and

Σ =

(
σ21 σ12
σ12 σ22

)
(covariance matrix)

=

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)

The joint density function is then given as

f (x1, x2) =
1

2π|Σ|1/2 exp
{
(x⃗ − µ⃗)TΣ−1(x⃗ − µ⃗)

} (
x⃗ =

(
x1
x2

))
This is fine by itself, but we can expand it for calculations. First we begin with |Σ|:

|Σ| = σ21σ22 − σ212
= σ21σ

2
2 − (ρσ1σ2)

2

= σ21σ
2
2 − ρ2σ21σ22

= σ21σ
2
2(1− ρ2)

The normalizing constant 1/2π|Σ|1/2 is then

1

2πσ1σ2
√
1− ρ2

Expanding the exponent we see the vector-matrix calculation is expanded as

(
x1 − µ1
x2 − µ2

)T
Σ−1

(
x1 − µ1
x2 − µ2

)
and Σ−1 can be written as

1See the Appendix for more information
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Σ−1 =
1

σ21σ
2
2(1− ρ2)

(
σ22 −σ12
−σ12 σ21

)
=

1

1− ρ2

(
1/σ21 −ρ/σ1σ2
−ρ/σ1σ2 1/σ22

)

after some algebra and simplification, we get the final result for the exponent:

−
1

2(1− ρ2)

[(
x1 − µ1
σ1

)2
− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)
+

(
x2 − µ2
σ2

)2]

This makes the alternate form of the bivariate normal distribution as

Bivariate Normal p.d.f

f (x1, x2) =
1

2π
√
(1− ρ2)σ1σ2

exp

{
−

1

2(1− ρ2)

[(
x1 − µ1
σ1

)2
− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)

+

(
x2 − µ2
σ2

)2 ]}

K

Now we can see what the likelihood estimates for this distribution are.

Example 1.2.6 (Bivariate Normal Likelihood). The form of the likelihood for this distribution
is

L =
n∏
i=1

f (x1i , x2i) =

n∏
i=1

1

2πσ1σ2
√
1− ρ2

exp

{
−

1

2(1− ρ2)

[(
x1i − µ1
σ1

)2
− 2ρ

(
x1i − µ1
σ1

)(
x2i − µ2
σ2

)
+

(
x2i − µ2
σ2

)2 ]}

Here, there are 5 unknowns µ1, µ2, σ1, σ2, σ12 and if we solve the simultaneous likelihood
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equations we arrive at

µ̂1 = x̄1

µ̂2 = x̄2

σ̂21 =
1

n

n∑
i=1

(x1i − x̄1)2

σ̂22 =
1

n

n∑
i=1

(x2i − x̄2)2

σ̂12 =
1

n

n∑
i=1

(x1i − x̄1)(x2i − x̄2)

ª

1.2.2 Summary about Bivariate Normal
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now give a summary about the properties of the bivariate normal distribution.

Facts about the Bivariate Normal Distribution

1. Each marginal distribution is normal, i.e. Xi ∼ N(µi , σ2i ) for all i ∈ {1, 2}

2. Each linear combination of X1, X2 is also normal, that is if

Z1 = a1X1 + a2X2 + a3

Z2 = b1X1 + b2X2 + b3

then Z1, Z2 also follow a bivariate normal distribution

3. The conditional distribution of X1 given X2 is normal with

E(X1|X2) = µ1 + ρσ1
(
X2 − µ2
σ2

)
V (X1|X2) = (1− ρ2)σ21

and

E(X2|X1) = µ2 + ρσ2
(
X1 − µ1
σ1

)
V (X2|X1) = (1− ρ2)σ22
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Proof. To find the conditional distribution we proceed as follows

f (x2|x1) =
f (x1, x2)

f (x1)dx1

=

1

2πσ1σ2
√
1−ρ2
exp{A}

1√
2πσ1
exp{B}

where

A =

{
−

1

2(1− ρ2)

[(
x1 − µ1
σ1

)2
− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)

+

(
x2 − µ2
σ2

)2 ]}

B = −
1

2

(
x1 − µ1
σ1

)2
This results in the simplification

f (x2|x1) =
1√

2πσ22
√
1− ρ2

× exp

{
−

1

(1− ρ2)

(
x1 − µ1
σ1

)2
+

2ρ

2(1− ρ2)
(x1 − µ1)(x2 − µ2)

σ1σ2
−

1

(1− ρ2)

(
x2 − µ2
σ2

)2
1

2

(
x1 − µ1
σ1

)2}

We then collect the terms and simplify (there is a perfect square in the exponent above),
we arrive at a form for f (x2|x1) that is of a normal distribution with mean and variance
given in fact #2. This concludes the proof. □

4. If there is no association between X1, X2, then the joint distribution is a product of the
marginal distributions (independence between normal variates).

Proof. We begin with the simplified p.d.f for the bivariate normal and factorize it ac-
cordingly:

f (x1, x2) =
1

2πσ1σ2
exp

{
−
1

2

[(
x1 − µ1
σ1

)2
+

(
x2 − µ2
σ2

)2]}

=
1√
2πσ1

exp

{
−
1

2

(
x1 − µ1
σ1

)2}
×

1√
2πσ2

exp

{
−
1

2

(
x2 − µ2
σ2

)2}
= f (x1)× f (x2)
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which shows what we sought. □

K

1.2.3 Non-Calculus MLE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now give some examples of how other methods of calculating the MLE are better used
rather than calculus. These are discrete in nature.

Example 1.2.7 (Screening Test). Suppose a test for a disease has the property:

• Positive if disease presented with probability 0.9 (true positive)

• Positive if no disease presented with probability 0.1 (false positive)

A test result X could be a binary variable where

X =

{
1 test positive

0 test negative

We want to estimate or determine the chance if a subject has the disease given the result of
our test is positive. In this case, the parameter space (values of probabilities we choose) has
two values

Ω = {0.1, 0.9}

We set {
θ = 0.1 when person tested does not have disease

θ = 0.9 when person tested has disease

then, P (X = x |θ) = θx(1 − θ)1−x and as a function of θ, this is a likelihood function. It
returns a probability of true positive/false positive under the true outcome of the person.
Now, if X = 0 (test negative), then

P (X = 0|θ) =

{
0.9 if θ = 0.1 (error)

0.1 if θ = 0.9 (no error)

so the MLE is the value with the highest chance, or θ = 0.1 if the test is negative. Similarly,

P (X = 1|θ) =

{
0.9 if θ = 0.9 (no error)

0.1 if θ = 0.1 (error)

so the MLE is θ = 0.9 if X = 1 is observed. Thus, the values of the MLE are

θ̂MLE =

{
0.1 if X = 0

0.9 if X = 1
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ª

Example 1.2.8 (Sampling from Uniform). Suppose X1, ..., Xn
i id∼ U(0, θ), that is

f (xi |θ) =

{
1/θ xi ∈ [0, θ]
0 else

The joint p.d.f is given by

f (x1, ..., xn|θ) =

{
1/θn ∀xi ∈ [0, θ]
0 o.w.

Now, any estimate of θ must meet or exceed xi for all i ∈ {1, ..., n}. Since 1/θn is decreasing
in θ,

• the larger θ, the smaller 1/θn

• θ̂MLE is the smallest value that θ can be while still leaving the likelihood non-zero. This
occurs when θ = maxi{xi}.

Hence,
θ̂MLE = max

1≤i≤n
{xi}

ª

Remark 1.2.1.

Some facts about MLE

1. They do not always exist

2. They are not always unique (multiple can exist)

♦

The following examples will help illustrate these ideas.

Example 1.2.9 (Non-Existent MLE). Consider Sampling from Uniform but with a slight
modification:

f (x |θ) =

{
1/θ x ∈ (0, θ)
0 o.w.

Since x ∈ (0, θ) we can not have θ̂MLE = max{x1, ..., xn} because θ ̸= xi for all i ∈ {1, ..., n}.
We can, however, choose θ̂MLE to be arbitarily close to max{x1, ..., xn} but can never equal
max{x1, ..., xn}. Hence, the MLE cannot exist.
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ª

Example 1.2.10 (Non-Unique MLE). Consider X1, ..., Xn
i id∼ U[θ, θ + 1] for all θ ∈ R. Then,

the p.d.f for each Xi is

f (xi |θ) =

{
1 xi ∈ [θ, θ + 1]
0 o.w.

This makes the joint p.d.f as

f (x1, ..., xn|θ) =

{
1 xi ∈ [θ, θ + 1] ∀i ∈ {1, ..., n}
0 o.w.

Now, we know by the support of this function that xi ≥ θ for all i ∈ {1, ..., n} implies that
even the least of these xi is at or above θ, or min{x1, ..., xn} ≥ θ. Also, when xi ≤ θ + 1 for
all i ∈ {1, ..., n} we know that max{x1, ..., xn} ≤ θ + 1 or max{x1, ..., xn} − 1 ≤ θ. Hence,

xi ∈ [θ, θ + 1] ∀i ∈ {1, ..., n} =⇒ θ ∈ [max{x1, ..., xn} − 1,min{x1, ..., xn}]

and the likelihood function is

L(θ|x1, ..., xn) =

{
1 θ ∈ [max{x1, ..., xn} − 1,min{x1, ..., xn}]
0 else

therefore any value for θ in the interval

[max{x1, ..., xn} − 1,min{x1, ..., xn}]

can be used as an MLE2.
Note: in this problem we have a uniform over an interval of length 1 but we cannot specifiy
where this interval is located.

ª

1.2.4 More Properties of MLE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We give some more information about MLE’s and their properties that we may use in a
statistical setting.

Properties of MLE’s

1. Invariance

Theorem 1.2.1 (MLE Invariance). If θ̂MLE is MLE of θ and g is a one-to-one function

2max{x1, ..., xn} − 1 ≤ min{x1, ..., xn} since at most minimum and maximum differ by at most one.
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of θ, then ĝ(θ)MLE = g(θ̂MLE).

Proof. Let Ω = parameter space of original parametrization. Then when we transform
θ get get a new parameter space: g(Ω) = Γ. If we set ψ = g(θ) and g−1 = h, then it
follows that

θ = h(ψ)

Notice, the original p.d.f is f (x |θ) and this is equivalent to f (x |h(ψ)). When we
transform θ, the likelihoods per g(θ) stay the same for all θ ∈ Ω since g is bijective.
Thus,

L(ψ|x1, ..., xn) = L(θ|x1, ..., xn) = f (x1, ..., xn|h(ψ))

and we look for ψ̂MLE = ψ̂ such that ψ̂ maximizes L(ψ). Now, by definition of MLE,
θ̂MLE maximizes L(θ|x1, ..., xn) and since θ = h(ψ) we must have θ̂MLE = h(ψ̂MLE)

as the likelihoods between parametizations are the same. Since g−1 = h, we have
g(θ̂MLE) = ψ̂MLE as we sought to show. □

2. Defining the MLE of a function g(θ)

Definition 1.2.5 (MLE of function g(θ)). If g(θ) is an arbitrary function (not always
one-to-one) such that

g : Ω→ G︸︷︷︸
image of Ω

Then, we can define a set Gt ⊂ Ω where Gt = {θ : g(θ) = t}. If we further define
L∗(t) = maxθ∈Gt ℓ(θ|x1, ..., xn), that is, L∗ is the maximum of the log-likelihood function
such that the likelihood is maximized over all θ̂ that map into t. With this, we define
the MLE of g(θ) to be the value t̂ such that

L∗(t̂) = max
t∈Gt

L∗(t)

so we have possibly several θ such that g(θ) = t mapping into the same t.

Note: L∗(t) is the value of log-likelihood where the log-likelihood is maximized over
the values of θ that map into t, this takes care of any mappings that are surjective as
well. We then find the value of t that maximizes L∗; this value is t̂MLE = ĝ(θ)MLE.

3. Invariance (generalized)

Theorem 1.2.2 (Generalized Invariance). If θ̂ = MLE of θ and g(θ) is any function of
θ, then [

ĝ(θ)
]
MLE
= g(θ̂MLE)

Proof. We need to show that t̂ = g(θ̂MLE) satisfies

max
t∈G

L∗(t) = L∗(t̂)

Note that L∗(t) is the maximum of ℓ(θ|x1, ..., xn) over one subset of Ω because we
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choose that value of θ such that L∗(t) is a maximum. Now, ℓ(θ̂MLE|x1, ..., xn) is a
maximum over all θ. This implies

L∗(t) ≤ ℓ(θ̂MLE|x1, ..., xn) ∀t ∈ G

Notice that if I maximize over a larger set of parameters (i.e. more than just t if
there are 2 or more parameters in the setting), the maximum cannot get smaller. As
reminder, all we have left to show is

L∗(t̂) = ℓ(θ̂MLE|x1, ..., xn)︸ ︷︷ ︸
max likelihood parametrized by θ

Now, by definition θ̂MLE ∈ Gt̂ and furthermore θ̂MLE maximizes ℓ(θ|x1, ..., xn) over all θ
and since Gt ⊂ Ω, we know θ̂MLE also maximizes over all θ ∈ Gt . This implies that

L∗(t̂) = ℓ(θ̂MLE|x1, ..., xn)

this means that t̂ = g(θ̂MLE) is the MLE of g(θ). □

K

We now give an example that illustrates the property of invariance:

Example 1.2.11 (Invariance for Variance). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where µ, σ2 are

both unknown. By Sampling from Normal we know

µ̂MLE = x̄

σ̂2MLE =
1

n

n∑
i=1

(xi − x̄)2

and we want the MLE of σ (std. dev.) and E(X2). We can set g(x) =
√
x and arrive at (by

invariance) [
ĝ(σ2)

]
MLE
= g(σ̂2MLE)

which can be simplified into

σ̂MLE =

√√√√1
n

n∑
i=1

(xi − x̄)2

Note also that

σ2 = E(X2)− (E(X))2

=⇒ E(X2) = σ2 + (E(X))2

=⇒ E(X2) = h(σ2, E(X))
(
h(x, y) = x + y 2

)
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and again by invariance (note multiple parameters σ2, E(X)) we have[
Ê(X2)

]
MLE
= h

(
σ̂2MLE,

[
Ê(X)

]
MLE

)
= h(σ̂2MLE, x̄)

= σ̂2MLE + x̄
2

ª

One other property of the MLE is consistency.

Consistency of MLE
Suppose X1, ..., Xn

i id∼ f (x |θ) and for some sample size n ≥ n0, there is a unique MLE θ̂[n,MLE]︸ ︷︷ ︸
depends on n

.

Then, under some conditions satisfied under certain scenarios:

θ̂[n,MLE]
P−→ θ (as n →∞)

K

1.2.5 Computing MLE’s (Caveats)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Computing MLE’s can be a challenge sometimes as there is not always an analytical solution
to the likelihood equation. We give two examples to show this.

Example 1.2.12 (Gamma Distribution MLE). Suppose X1, ..., Xn
i id∼ f (x |α) where

f (x |α) =
1

Γ(α)
xα−1e−x ∀x > 0, α > 0

then we can show:

L(α|x1, ..., xn) =
1

Γn(α)

(
n∏
i=1

xi

)α−1
× exp

(
−

n∑
i=1

xi

)

The log-likelihood equation is then

∂ℓ(α|x1, ..., xn)
∂α

= 0

which results in
Γ′(α)

Γ(α)︸ ︷︷ ︸
digamma function

=
1

n

∑
log xi
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Notice that the digamma function is tabulated meaning that there is no analytical solution
for α. This means that we can only use numerical approximations.

ª

Example 1.2.13 (Cauchy Distribution MLE). Suppose X1, ..., Xn
i id∼ f (x |θ) where

f (x |θ) =
1

π(1 + (x − θ)2) −∞ < x <∞

Then, the likelihood function is

L(θ|x1, ..., xn) =
1

πn
∏n
i=1[1 + (x − θ)2]

and again we need a numerical technique to find a solution.

ª

One technique to extract MLE’s is Newton-Raphson since we wish to solve the equation
L′(θ|x1, ..., xn) = f (θ) = 0. In this method we use a Taylor Approximation. If we set θ0 as
an initial guess, then we use

θ1 = θ0 −
f (θ0)

f ′(θ0)

then we keep updating until there is no (noticeable) change in updated value of θ.

1.3 Method of Moments (MM)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this method, we assume X1, ..., Xn
i id∼ Pθ where θ = (θ1, ..., θk) and E(Xk) < ∞ (finite

moments). We set
µj = E(X

j |θ)

and assume µ(θ) = (µ1(θ), ..., µk(θ)) is one-to-one (i.e. there is an inverse function M such
that θ = M(µ1(θ), ..., µk(θ))). When we observe the data, we let

mj =
1

n

n∑
i=1

x ji j = 1, ..., k

be the sample moments. The method of moments estimator is then

θ̂MM = M(m1, ..., mk)

This implies M(m1, ..., mk) ≈ θ and further per parameter: mj ≈ µj . Using this information,
we can give a procedure for finding the MM estimates:
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Steps to Find MM Estimates

1. Empirically find µ̂j

2. Find the parametric forms for µj

3. Equate each µ̂ji with µji respectively

4. Solve the resulting system of equations for the parameters

K

We give an example to illustrate this process

Example 1.3.1 (Gamma Distribution MM). Suppose we sample X1, ..., Xn from a Gamma
distribution and want to estimate unknown parameters α and β. Note that the pdf of a
Gamma distributed variable Xi is:

f (xi |α, β) =
βα

Γ(α)
xα−1i e−βxi .

This makes the likelihood function:

L(x1, ..., xn|α, β) =
(
βα

Γ(α)

)n( n∏
i=1

xi

)α−1
e−β

∑n
i=1 xi

which is very difficult to optimize due to the gamma function. Since MLE is not possible
easily we will ustilize MOM to generate point estimates of α and β. As there are 2 parameters
unknown we only need to use the first 2 sample and population moments to compute our
point estimates. Equating the respective moments gives us:

E(X) =
α

β
=

∑n
i=1 xi
n

= x (1.3.1)

E(X2) = V ar(X) + (E(X))2 =
α

β2
+
α2

β2
=

∑n
i=1 x

2
i

n
. (1.3.2)

Now we can solve with substitution the point estimates for our parameters, rewriting the
value of α in terms of β:

α = βx

and substituting the value in (1.3.2) gives:

x

β
+ (x)2 =

1

n

n∑
i=1

x2i

and solving for β results in:

β̂MM =
nx∑n

i=1 x
2
i − n(x)2

=
nx∑n

i=1(xi − x)2
.
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Similarly, we can solve for α:
β =

α

x

and rewrite (1.3.2):

(x)2

α
+ (x)2 =

1

n

n∑
i=1

x2i =⇒
(x)2

α
=
1

n

(
n∑
i=1

x2i − n(x)2
)
=⇒

1

α
=

∑n
i=1(xi − x)2

n(x)2
=⇒

=⇒ α̂MM =
n(x)2∑n

i=1(xi − x)2
.

ª

So, why do we need this process? How does it relate to the MLE? We give 3 reasons:

• MM estimates do not require optimizing a likelihood function, so they make be less
computationally extensive

• Often MM estimates are also MLE’s

• MM estimates are consistent by the law of large numbers. So,

θ̂MM
P−→ θ (as n →∞)

We give one more example that relates this to the MLE

Example 1.3.2 (Normal Distribution MM). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where µ, σ2 are

unknown. Then, the observed moments are:

µ̂1 = m1 =
1

n

n∑
i=1

xi

µ̂2 = m2 =
1

n

n∑
i=1

x2i

Then, µ̂MM = µ̂MLE = x̄ and

m2 ≈ σ2 + µ2 (σ2 = E(X2)− µ2)
=⇒ m2 − µ2 ≈ σ2

=⇒
1

n

n∑
i=1

x2i − x̄2 = σ̂2MM = σ̂2MLE

Hence, both MM estimates are of the same form as the MLE estimates.

ª
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1.4 Appendix (Inference: Estimation)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now give an account of the bivariate distribution based on simple linear regression. The
results as we already derived are the same only this way gives an idea of how one might
create the form of the distribution. We begin with the regression setup. We assume X1 ∼
N(µX1, σ

2
X1
) and X2 ∼ N(µX2, σ2X2) on the condition that X2 = α + βX1 + ϵ for parameters

α, β. If we set the error per the true regression line as ϵ = Z = X2 − α − βX1, then we
have E(Z) = 0 and V (Z) = σX2|X1 since the variation of the error is the sole source of the
variation of the conditional distribution of X2|X1.

Now, how would we know the true form of α and β? One solution is to consider the
covariance between X1 and X2. We use the form Cov(X1, X2) = E(X1X2) − µX1µX2. We
compute E(X1X2) as follows:

E(X1X2) =

∫
x1

E(X1X2|X1 = x1)f (x1)dx1

=

∫
x1

x1E(X2|X1 = x1)f (x1)dx1

=

∫
x1

x1E(Z)f (x1)dx1

=

∫
x1

x1(α+ βx1)f (x1)dx1

= αµX1 + β

∫
x1

x21 f (x1)dx1

= αµX1 + β(σ
2
X1
+ µ2X1)

= αµX1 + βσ
2
X1
+ βµ2X1

Note that µX2 = α+βµX1 since X2 = α+βX1+ ϵ where ϵ = Z ∼ N(0, σX2|X1). This makes
µX1µX2 = αµX1 + βµ

2
X1

. This all implies

Cov(X1, X2) = βσ
2
X1

=⇒ ρ = β
σX1
σX2

=⇒ β = ρ
σX2
σX1

The corresponding form of α is then

α = µX2 − ρ
σX2
σX1

µX1
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We next compute σ2Z. Since Z = X2 − α− βX1 it follows that

σ2Z = V (X2 − α− βX1)
= σ2X2 + β

2σ2X1 − 2β(βσ
2
X1
) (Cov(X2,−βX1) = −βCov(X2, X1))

= σ2X2 − β
2σ2X1

= σ2X2(1− ρ
2)

(
β2 = ρ2

σ2X2
σ2X1

)

We are now ready to compute the distribution of Z. By our assumption, Z ∼ N(µZ, σ
2
Z)

where µZ = 0 and σ2Z = σ
2
X2
(1− ρ2). It now follows that

fZ(z) =
1√
2πσZ

exp

{
−
1

2

(
z

σZ

)2}

Since fZ(z) = fX2|X1=x1(x2) since variation is only from the error assuming X1 is observed,
some substitution gives:

fX2|X1=x1(x2) =
1

√
2πσX2

√
1− ρ2

exp

−12
(
x2 − α− βx1
σX2
√
1− ρ2

)2
=

1
√
2πσX2

√
1− ρ2

exp

{
−

1

2(1− ρ2)

(
x2 − α− βx1

σX2

)2}

Which shows that (X2|X1 = x1) ∼ N(α+ βx1, σ2X2(1− ρ
2)). More precisely, we have

E(X2|X1 = x1) = α+ βx1

= µX2 − ρ
σX2
σX1

µX1 + ρ
σX2
σX1

x1

= µX2 + ρ
σX2
σX1
(x1 − µX1)

which is the same form as we gave in point #3 in BVN Facts.

Note, the quantity (
x2 − α− βx1

σX2

)2
can be simplified into (with the addition and subtraction of α− βµX1) into(

(x2 − µX2)− β(x1 − µX1)
σX2

)2
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and expanding this square gives us(
x2 − µX2
σX2

)2
−
2β(x2 − µX2)(x1 − µX1)

σ2X2
+ β2

(
x1 − µX1
σX2

)2
=

(
x2 − µX2
σX2

)2
−
2ρ(x2 − µX2)(x1 − µX1)

σX2σX1
+ ρ2

(
x1 − µX1
σX1

)2
since

(
β2 = ρ2

σ2X2
σ2X1

)

since the marginal distribution of X1 is

fX1(x1) =
1√
2πσX1

exp

{
−
1

2

(
x1 − µX1
σX1

)2}

it follows that f (x2, x1) = f (x2|x1)f (x1) has the form

f (x1, x2) =
1

2π
√
(1− ρ2)σX1σX2

exp

{
−

1

2(1− ρ2)

[(
x1 − µX1
σX1

)2
− 2ρ

(
x1 − µX1
σX1

)(
x2 − µX2
σX2

)

+

(
x2 − µX2
σX2

)2 ]}

which is the same form as the distribution for the bivariate normal. This argument is axis
invariant since we kept both X1 and X2 random and can be repeated for X1|X2 and give
similar results (the 2’s are permuted with 1’s).
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Chapter 2 — Bayesian Inference
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bayesian inference is a different type of statistical method. This theory has its roots in Bayes’
Theorem and thinks of probabilities as degrees of belief rather than ratios observed by
experiment. To begin, we recall the methods of frequentist inference. In a frequentist
statistical model we have

1. X = random variable of interest

2. X ∼ Pθ = distribution variable follows (the model)

3. θ ∈ Ω = the parameter space

In this method of inference, we usually consider θ a fixed but unknown number and the
objective of statistical activity is to estimate θ. What makes the bayesian viewpoint different
is that θ is NOT fixed. Instead, θ is a random variable representing out degree of belief
over the possible values that parameter can take. This makes θ have a probability distribution
much like our sampled variates Xi .

2.1 Prior and Posterior Distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a Bayesian setting, we sample variates as we do with frequentist methods only we assume
a random value of θ as opposed to a fixed on. So, our model is then

X1, ..., Xn|θ ∼ Pθ (θ random)

where θ ∼ ξ(θ). Here ξ(θ) is called the prior distribution. We give some facts about it
below

Prior Distribution Facts

• It is determined for θ prior to observing the data (or performing the experiment)

• The range (support for θ) is the parameter space Ω

• It is a probability distribution (integrates to 1) except in the case of the improper prior
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K

The aim of Bayesian inference to use the data we have collected to update the distribution
of θ so as to reflect what we have observed. This is known as Bayesian Updating. The
result of bayesian updating is to generate a posterior distribution ξ(θ|x1, ..., xn).

2.1.1 Posterior Distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The posterior distribution is one conditional on the data. To find it we first consider the
probability in the discrete case, P (θ|Data) by Bayes’ Theorem this can we written as

P (θ|Data) =
P (Data|θ)P (θ)
P (Data, θ)

=
P (Data|θ)P (θ)∑
Ω

P (Data|θ)P (θ)
(Law of Total Prob.)

=
P (x1, ..., xn|θ)P (θ)∑
Ω

P (x1, ..., xn|θ)P (θ)
(Data = x1, ..., xn)

=
f (x1, ..., xn|θ)P (θ)∑
Ω

f (x1, ..., xn|θ)P (θ)
(by definition of joint mass function)

Note that the denominator of this fraction is called the normalizing constant. If we keep this
form, this is how we will compute the posterior probability P (θ|Data) in the discrete case. In
the continuous case, we set P (θ|Data) = ξ(θ|Data)dθ and P (θ) = ξ(θ)dθ. The summation
over the parameter space then also becomes and integral to adjust for the continuous nature
of θ. We then have the continuous form as

[ξ(θ|Data)]dθ =

 f (Data|θ)ξ(θ)∫
Ω

f (Data|θ)ξ(θ)dθ

 dθ =
ξ(θ|x1, ..., xn) =

f (x1, ..., xn|θ)ξ(θ)∫
Ω

f (x1, ..., xn|θ)ξ(θ)dθ︸ ︷︷ ︸
g(x1,...,xn)

(dθ’s cancel for densities)

where we give a new name for the normalizing constant
∫
Ω

f (x1, ..., xn|θ)ξ(θ)dθ as g(x1, ..., xn)

for brevity and to reflect that the resulting integration marginalizes out the variable θ. We
formalize this result by a theorem.
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Theorem 2.1.1 (Posterior Distribution Form). The form for the posterior distribution is given
by

ξ(θ|x1, ..., xn) =
f (x1, ..., xn|θ)ξ(θ)
g(x1, ..., xn)

where X1, ..., Xn|θ
i id∼ Pθ

Proof. By conditional independence of the data, we have the form of the joint p.d.f given a
value of θ as

f (x1, ..., xn|θ) = f (x1|θ)× · · · × f (xn|θ)

Further, we can create a joint density for x1, ..., xn, θ noting it with the function z . To make
notation easier, we set x = (x1, ..., xn). By property of joint p.d.f’s, we can write

z(θ, x) = z(x, θ)

and by conditional probability for continuous functions (each factor belongs to a different
probability distribution as we speak of different events) we have

ξ(θ|x)g(x) = f (x |θ)ξ(θ) =

ξ(θ|x) =
f (x |θ)ξ(θ)
g(x)

=

ξ(θ|x) =
f (x |θ)ξ(θ)∫
Ω

f (x |θ)ξ(θ)dθ
(def. of marginal distn.)

which is the same form as we intuitively found out previously. □

Example 2.1.1 (Fluorescent Lamps). Suppose the lifetimes for fluorescent lamps is given by
X1, ..., Xn

i id∼ exp(θ). This means that

f (xi |θ) = θe−θx x > 0, θ > 0

The aim is to find a posterior distribution for θ given our data x1, ..., xn. The joint distribution
f (x1, ..., xn|θ) is given by

n∏
i=1

f (xi |θ) =
n∏
i=1

θe−θxi

= θne−θ
∑
xi

= θne−θy
(
let y =

∑
xi

)
where θ ∈ (0,∞). Now, how can we find a prior before we observe the lifetimes? A
distribution with support θ ∈ (0,∞) is given by the family of gamma distributions1. The
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form of the gamma prior is

ξ(θ) =
βα

Γ(α)
θα−1e−βθ θ > 0, α > 0, β > 0

for some given α, β. Note that
βα

Γ(α)
is the reciprocal of the area under θα−1e−βθ over the

support. Some facts about this prior are:

E(θk) =
Γ(α+ β)

βkΓ(α)
E(θ) =

α

β
V (θ) =

α

β2

What values of α, β can be a ’good’ prior (reflects population closely)? Suppose we assume
the prior mean and variance are

E(θ) =
α0
β0
= 0.0002 V (θ) =

α0
β20
= 0.0001

Solving for α0 and β0 we get

α0 = 4 β0 = 20, 000

Hence, the prior is

ξ(θ) =
(20, 000)4

Γ(4)
θ3e−20,000

=
(20, 000)4

3!
θ3e−20,000 (Γ(α0) = (α0 − 1)! = 3!)

The posterior is then given by

ξ(θ|y) =
θne−θy × (20,000)4

3!
θ3e−20,000θ∫ ∞

0

θne−θy ×
(20, 000)4

3!
θ3e−20,000θdθ

=
θn+3e−(y+20,000)θ∫ ∞

0

θn+3e−(y+20,000)θdθ

(const. cancel)

We know that ∫ ∞
0

θn+3e−(y+20000)θdθ =
Γ(n + 4)

(y + 20000)n+4

so

ξ(θ|y) =
−(y + 20000)n+4

Γ(n + 4)
θn+3e−(y+20000)θ

∼ Gamma(α = n + 4, β = (y + 20000))

Plots of the prior and posterior distribution are given below. Note that in the posterior
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distribution plot n = 5 and y = 16, 178.
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Remark 2.1.1. Since g(x1, ..., xn) is constant, we can write the posterior as

ξ(θ|x1, ..., xn) =
f (x1, ..., xn|θ)× ξ(θ)

constant

this would then imply

ξ(θ|x1, ..., xn) ∝ f (x1, ..., xn|θ)ξ(θ) =
∏
i

f (xi |θ)ξ(θ)

∝ (likelihood)× (prior)

so the density of the posterior is proportional to the product of the densities of the likelihood
and prior.

♦

2.1.2 Conjugate Prior
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose we have a data distribution f (x1, ..., xn|θ) and a prior from some family of distri-
butions such that the posterior is from the same family. Then, we call the family the prior
and posterior are from the conjugate family and the prior the conjugate prior. We have
seen a conjugate prior and family in the previous example. The conjugate prior is distributed

1Fact: the exponential distribution is a special case of the gamma distribution with α = 1.
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Gamma(α0, β0), the posterior is Gamma(α0 + n,
∑
xi + β0), and the conjugate family is the

set of all Gamma distributions. We give more examples of conjugate priors below

Example 2.1.2 (Beta is a Conjugate Prior). Suppose X1, ..., Xn
i id∼ Bernoulli(θ). Then

f (xi |θ) = θxi (1− θ)1−xi

which implies that the joint distribution is

f (x1, ..., xn|θ) = θ
∑
i xi (1− θ)n−

∑
i xi = θy(1− θ)n−y

if we set y =
∑
i xi . For the prior ξ(θ) we need a distribution with support Ω = [0, 1]. A

good candidate is the beta distribution, so we set

ξ(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 0 ≤ θ ≤ 1 α, β > 0

This results in

f (x1, ..., xn|θ)ξ(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θy+α−1(1− θ)n−y+β−1

Also, notice that ∫ 1
0

θy+α−1(1− θ)n−y+β−1dθ =
Γ(n + α+ β)

Γ(y + α)Γ(n − y + β)

which then implies

ξ(θ|x1, ..., xn) =
Γ(n + α+ β)

Γ(y + α)Γ(n − y + β)θ
y+α−1(1− θ)n−y+β−1

∼ Beta(y + α, n − y + β)

So, the posterior is a beta distribution as well which makes the beta distribution a conjugate
prior assuming the data is Bernoulli.

ª

Example 2.1.3 (Poisson is Conjugate Prior). Suppose X1, ..., Xn
i id∼ Poisson(θ) where θ ∼

Gamma(α, β). Then,

f (x1, ..., xn|θ)ξ(θ) =
1

x1! . . . xn!
θ
∑
i xie−nθ

[
βα

Γ(α)
θα−1e−βθ

]
=

βα

x1! . . . xn!× Γ(α)
[
θy+α−1e−θ(n+β)

]
(y =

∑
i xi)

with some calculations and simplifications of the constants (anything observed and without
the quantity θ cancel out in the form of the posterior), we can show that the posterior also
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follows a Gamma distribution too.

ª

Example 2.1.4 (Normal is a Conjugate Prior). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where µ is

unknown and σ2 is known. Since we don’t know the value of µ, we set µ = θ and have

θ ∼ N(µ0, ν20)

with some calculations2we can show

(θ|x1, ..., xn) ∼ N(µ1, ν21)

where

µ1 =
σ2µ0 + nν

2
0 x̄n

σ2 + nν20
and ν21 =

σ2ν20
σ2 + nν20

ª

2.2 Bayes’ Estimator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now will use the theory of Bayesian Statistics to create point estimations for population
parameters as we did with likelihood functions in the estimation chapter. First we review the
setup. Suppose we have X1, ..., Xn

i id∼ Pθ : θ ∈ Ω where Xi |θ ∼ Pθ and

ξ(θ) = prior distribution

ξ(θ|x1, ..., xn) = posterior distribution

The question is: how can we use this information to find an actual estimate of θ? Recall
that the definition of an estimator δ(X1, ..., Xn) of a parameter θ is a real valued function
such that

δ : Rn → Ω

Observed values of the estimator are called estimates δ(x1, ..., xn). In order to create a
Bayesian estimate, we can employ what is called at Loss Function.

2.2.1 Loss Function
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To motivate the idea behind the loss function, we give the following dialogue:

2see Appendix for a derivation
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Q: What to we want from an estimator?
A: It should yield a value close to the true quantity.

Q: How can we measure the performance of an estimator?
A: Through a Loss Function

We define a loss function as follows:

Definition 2.2.1 (Loss Function). A loss function L(θ, a) is a function of 2 variables θ and a
whose output can be described by a probability distribution. If θ is a true parameter and an
estimate of it is θ̂ = a, then

L(θ, θ̂)

is the loss. In other words, L(θ, θ̂) measures the discrepancy between θ and its estimate θ̂.

¨

In Bayesian inference, θ is a random variable with support Ω and so then is the loss L(θ, a)
which is a function of it. While we cannot then find a deterministic value for the loss, we can
compute the expected loss. This would be

E [L(θ, a)]︸ ︷︷ ︸
average loss

=

∫
Ω

L(θ, a)ξ(θ)dθ

assuming we have not conducted the experiment yet and only use prior information. The loss
over all possible values of θ is then a function of a.

Note: We have the value of a as

a = specific value for a specific sample

and will have to create some condition to extract it. ∞

When we observe the data, it is best not to use the prior for computing the expected loss.
Instead, we use the expected posterior loss which is given by

E [L(θ, a)| x1, ..., xn] =
∫
Ω

L(θ, a)ξ(θ|x1, ..., xn)dθ

Some examples of typical loss functions are

1. Squared Error Loss: L(θ, a) = (θ − a)2

2. Absolute Error Loss: L(θ, a) = |θ − a|

Since we are looking at how far away the estimate a is from θ, we use differences.

2.2.2 Defining the Bayes’ Estimator
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The specific estimator that is "best" for the data we observe relative to the expected posterior
loss is known as the Bayes’ Estimator which we define below:

Definition 2.2.2 (Bayes’ Estimator). A Bayes’ Estimator δ∗(X1, ..., Xn) is an estimator such
that its observed value δ∗(x1, ..., xn) (the Bayes’ estimate) minimizes the expected posterior
loss. In other words, δ∗(x1, ..., xn) is value such that

δ∗(x1, ..., xn) = E [L(θ, δ
∗(x1, ..., xn))| x1, ..., xn] ≤ E [L(θ, a)| x1, ..., xn]︸ ︷︷ ︸

for any other "a"

or, equivalently it is a value such that

E [L(θ, δ∗(x1, ..., xn))| x1, ..., xn] = min
a∈Ω
{E [L(θ, a)| x1, ..., xn]}

¨

To summarize the definition above:

1. a is some number/value ∈ Ω

2. L(θ, a) is the loss for estimating θ with a

3. E[L(θ, a)] is the expected loss over the distribution for θ

4. δ∗(x1, ..., xn) is the estimate (i.e. specific value) for θ

5. E [L(θ, δ∗(x1, ..., xn))| x1, ..., xn] is the expected loss if a = δ∗(x1, ..., xn) for the posterior
distribution

When the expected posterior loss is minimized, the resulting estimate that did so is called
the Bayes’ Estimate. If we can find a rule δ∗(X1, ..., Xn) that can calculate an estimate for
each sample we might have, then we get a Bayes’ Estimator.

2.2.3 Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now give some examples using the method Bayesian estimation with respect to minimizing
the expected loss.

Example 2.2.1 (Bayes’ Estimate for Bernoulli). Suppose X1, ..., Xn
i id∼ Bernoulli(θ) and

θ ∼ Beta(α, β)

L(θ, a) = (θ − a)2

i.e. for a specific example we will have δ∗(x1, ..., xn) as our estimate.
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Q: What is the form of this estimate?

If we set y =
∑
i xi , then by our previous calculations (see Beta is a Conjugate Prior), we

know
(θ|x1, ..., xn) ∼ Beta(α+ y︸ ︷︷ ︸

α1

, β + n − y︸ ︷︷ ︸
β1

)

For a squared error loss, any fixed sample x1, ..., xn gives the minimum expected square loss
as the mean of the posterior distribution3. In other words,

E(θ|x1, ..., xn) =
α1

α1 + β1
=

α+ y

α+ β + n

is δ∗(x1, ..., xn). The Bayes’ estimator is then given by

δ∗(X1, ..., Xn) =
α+

∑n
i=1Xi

α+ β + n

i.e. the value to calculate is a modified sample proportion. Note the similarity to the MLE
estimate for this type of data which is θ̂MLE =

∑
i Xi/n which too is a sample proportion.

ª

Example 2.2.2 (Bayes’ Estimate for Normal). Suppose that X1, ..., Xn|θ
i id∼ N (µ, σ2) and

θ ∼ N(µ0, ν20) where θ = µ = unknown and σ2 = known. Then, since θ and X1, ..., Xn are
normally distributed, the posterior distribution θ|x1, ..., xn is also normally distributed with

µ1 =
µ0σ

2 + nν20 x̄

nν20 + σ
2

ν21 =
σ2ν20

nν20 + σ
2

this makes the Bayes’ estimate δ∗(x1, ..., xn) =
µ0σ

2 + nν20 x̄

nν20 + σ
2

as it is the mean of the posterior

distribution.

ª

2.2.4 Absolute Error Loss
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we choose the absolute error loss where L(θ, a) = |θ−a|, we let δ∗(x1, ..., xn) is an estimate
that minimizes this loss. The quantity that minimizes the absolute error loss is the median

3See the Appendix for a proof
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of the posterior distribution4. We define the median as the point θ̃ such that

P (X ≥ θ̃) = P (X ≤ θ̃) =
1

2

for a random sample X. It is typically complicated to calculate and thus hard to find a closed
form expression for. However, for a symmetric distribution (like the Normal Distribution) we
know median = mean. This means for a normal data with a normal prior and normal posterior
the Bayes’ estimator for the squared error loss is the same value as the absolute error loss.

Note: Both the choice of the loss function and prior has an effect on the Bayes’ estimator.
However, with increasing sample size, the effect of the prior distribution choice diminishes.

∞

2.2.5 Consistency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recall that an estimator θ̂n is called consistent if θ̂n
P−→ θ as n → ∞. We know that under

fairly general conditions, the Bayes’ estimator is consistent. This means

δ∗(X1, ..., Xn)
P−→ θ

for large n. This is true for a wide class of loss functions, but does depend on the loss function.
We give some examples to show this.

Example 2.2.3 (Bernoulli Distribution). We know for a Bernoulli distribution

δ∗(X1, ..., Xn) =
α+

∑
Xi

α+ β + n

=
α

α+ β + n
+

∑
Xi

α+ β + n

Notice for n →∞:
α

α+ β + n
→ 0 and

∑
Xi

α+ β + n
→ X̄

and since X̄ P−→ θ eventually, we have δ∗(X1, ..., Xn)
P−→ θ.

ª

Example 2.2.4 (Normal Distribution). We have a similar process, recall

δ∗(X1, ..., Xn) =
σ2µ0

σ2 + nν20
+

nν0X̄

σ2 + nν0

4See Appendix for a proof
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As n →∞
σ2µ0

σ2 + nν20
→ 0 and

nν0X̄

σ2 + nν0
→ X̄

Since X̄ P−→ µ eventually, we have δ∗(X1, ..., Xn)
P−→ µ.

ª

Note: Bayes estimation can also be used for vector valued parameters, i.e. θ = (θ1, ..., θn).
In this case, we need a joint prior ξ(θ) and computations can be complex. In addition, we
might also be interested in estimating some image of a function of a parameter ψ = h(θ)

rather than the parameter itself, these are Bayes’ estimators for a function. ∞

2.2.6 MLE’s and Bayes’ Estimation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In practice, we find that θ̂MLE and δ∗(X1, ..., Xn) are often both similar for large samples and
are based on functions of likelihood.
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2.3 Appendix (Bayesian Inference)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.1 Derivation of Posterior for Normal Prior
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we derive the form of the posterior of a normal prior as it is given in the
example. Recall that X1, ..., Xn|θ

i id∼N (µ, σ2) where θ = µ = unknown and σ2 = known. We
choose θ ∼ N(µ0, ν20) as the prior and need to find the form of the posterior. We make the
observation that any constants that make up f (x1, ..., xn|θ)ξ(θ) will cancel, so we only need
to see what the posterior is proportional to to see what the posterior could look like. First,

f (x1, ..., xn|θ) ∝ exp

{
−
1

2σ2

n∑
i=1

(xi − θ)2
}

while

ξ(θ) ∝ exp
{
−
1

2ν20
(θ − µ0)2

}
hence,

ξ(θ|x1, ..., xn) ∝ exp
{
−
1

2

[∑n
i=1(xi − θ)2

σ2
+
(θ − µ0)2

ν20

]}
Notice, that with the addition and subtraction of x̄ , we can write

∑
(xi − θ)2 = n(θ − x̄)2 +∑

(xi − x̄)2. This then makes

ξ(θ|x1, ..., xn) ∝ exp
{
−
1

2

[
n(θ − x̄)2

σ2
+
(θ − µ0)2

ν20

]}
× exp

{
−
1

2

∑
(xi − x̄)2

σ2

}
∝ exp

{
−
1

2

[
n(θ − x̄)2

σ2
+
(θ − µ0)2

ν20

]}
(right side does not depend on θ)

So, all the information we need to find the form of the posterior is given in

exp

{
−
1

2

[
n(θ − x̄)2

σ2
+
(θ − µ0)2

ν20

]}
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To do this, we will collect the terms (after squaring) and complete the square. We focus only
on the terms inside the exponent now for easier math.

−
1

2

[
n(θ − x̄)2

σ2
+
(θ − µ0)2

ν20

]
= −
1

2

[
n

σ2
(θ2 + x̄2 − 2θx̄) +

θ2 + µ0 − 2θµ0
ν20

]
= −
1

2

[
nν20
ν20σ

2
(θ2 + x̄2 − 2θx̄) +

σ2

σ2ν20
(θ2 + µ0 − 2θµ0)

]
= −
1

2

[
1

ν20σ
2

(
θ2(nν20 + σ

2)− 2θ(µ0σ2 + nν20 x̄) + (nν20 x̄2 + σ2µ20)
)]

= −
1

2

nν20 + σ
2

σ2ν20

(
θ2 − 2θ

[
µ0σ

2 + nν20 x̄

nν20 + σ
2

]
+
nν20 x̄

2 + σ2µ20
nν20 + σ

2

)
∝ −
1

2

nν20 + σ
2

σ2ν20

(
θ −

[
µ0σ

2 + nν20 x̄

nν20 + σ
2

])2
From this form we find

µ1 =
µ0σ

2 + nν20 x̄

nν20 + σ
2

ν21 =
σ2ν20

nν20 + σ
2

and futher that the posterior has the form of a normal distribution with mean µ1 and variance
ν21 . Hence, the posterior is a conjugate prior of the normal conjugate family.

2.3.2 Minimum Expected Square Error Loss
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this part we will show that the mean of the posterior distribution is the minimum of the
expectation of L(θ, a) = (θ − a)2.

Theorem 2.3.1 (Minimum Square Error Loss). The minimum of the expected square error
loss E[L(θ, a)|x1, ..., xn] where L(θ, a) = (θ − a)2 is the mean of the posterior distribution or
E[θ|x1, ..., xn], assuming it is finite.

Proof. We prove this directly by following the definition of expected values:

E[L(θ, a)|x1, ..., xn] =
∫
Ω

L(θ, a)ξ(θ|x1, ..., xn)dθ

=

∫
Ω

(θ − a)2ξ(θ|x1, ..., xn)dθ

We want to minimize this function with respect to a. Since it is continuous, we take the
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derivative check for extrema. We arrive at

∂E[L(θ, a)|x1, ..., xn]
∂a

=

∫
Ω

2(a − θ)ξ(θ|x1, ..., xn)dθ = 0

= a −
∫
Ω

θξ(θ|x1, ..., xn)dθ = 0

=⇒ a = E(θ|x1, ..., xn)

since
∂2E[L(θ, a)|x1, ..., xn]

∂a2
= 2 > 0

we know that this is a minimum. Hence, mina{E[L(θ, a)|x1, ..., xn)]} = E(θ|x1, ..., xn) when
the loss is the square error loss, as we sought to show. Notice, the minimum expected loss is
the variance of the posterior distribution or V (θ|x1, ..., xn). A similar argument can be made
for the discrete case. □

2.3.3 Minimum Expected Absolute Error Loss
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this part we will show that the mean of the posterior distribution is the minimum of the
expectation of L(θ, a) = |θ − a|.

Theorem 2.3.2 (Minimum Absolute Error Loss). The minimum of the expected absolute error
loss or E[L(θ, a)|x1, ..., xn] where L(θ, a) = |θ− a| is the median of the posterior distribution
or median(θ|x1, ..., xn) = θ̃.

Proof. We work by definition:

E[L(θ, a)|x1, ..., xn] =
∫
Ω

|θ − a|ξ(θ|x1, ..., xn)dθ

Since we are optimizing with respect to a we can see

∂E[L(θ, a)|x1, ..., xn]
∂a

=

∫
Ω′
ξ(θ|x1, ..., xn)dθ −

∫
Ω′′
ξ(θ|x1, ..., xn)dθ = 0

under the condition Ω′ ∪Ω′′ = Ω since

∂|θ − a|
∂a

=

{
1 a ∈ (θ,∞) = Ω′

−1 a ∈ (−∞, θ) = Ω′′
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Notice this constraint implies that∫
Ω′
ξ(θ|x1, ..., xn)dθ =

∫
Ω′′
ξ(θ|x1, ..., xn)dθ

and since
∫
Ω′
ξ(θ|x1, ..., xn)dθ ∈ [0, 1] we must have

∫
Ω′
ξ(θ|x1, ..., xn)dθ =

∫
Ω′′
ξ(θ|x1, ..., xn)dθ =

1

2

This can only happen when a = θ̃ = θmedian. Also, when we choose a < θ̃,
∂E[L(θ, a)|x1, ..., xn]

∂a
< 0 and when we choose a > θ̃,

∂E[L(θ, a)|x1, ..., xn]
∂a

> 0, so in-

deed a = θ̃ is a minimum of the expected absolute loss which is what we sought to show. A
similar argument can be made for the discrete case. □
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Chapter 3 — Sufficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Sufficient Statistics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sometimes a Bayes’ Estimate/MLE are not available, may not exist, or are hard to calculate.
In this case, we need to find other options. One possibility is using what is called a sufficient
statistic. Informally, a sufficient statistic T = r(X1, ..., Xn) is a summary of the data that
is not reliant on the actual data values X1, ..., Xn themselves.1 Notice when we know a
population parameter’s true value, the joint distribution depends only on the data we collect.
The same idea occurs with a sufficient statistic, so it is a good candidate for that population
parameter’s point estimate.

Example 3.1.1 (Normal Distribution). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where µ is unknown.

We wish to estimate µ as we have done before but cannot use the MLE nor the Bayes’
estimator to do so. Using the method of sufficient statistics, we can show that to estimate
µ it is enough to know

S =

n∑
i

Xi

rather than the data values X1, ..., Xn. Such a statistic S, is called sufficient.

ª

We now give some motivating questions to consider when considering how to calculate suffi-
cient statistics.

Q: How can we find (compute) sufficient statistics?

Q: What exactly do they mean?

To help answer these questions, we give some more information about sufficient statistics
below.

1we can simulate the data closely with this single statistic
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Sufficient Statistics Facts

1. If T (X1, ..., Xn) is sufficient, then all we need to know about the data X1, ..., Xn is
contained in T . Therefore, there is no information about θ in the data conditional
(given) T .

2. A statistic is sufficient for the parameter we are interested in, to find joint sufficiency,
we need to take both parameters into account. In other words, T (X1, ..., Xn) may be
sufficient for θ1, but not for θ2 in a two parameter problem.

3. If T = r(X1, ..., Xn) is sufficient, then

f (x1, ..., xn|t = r(x1, ..., xn)) =
f (x1, ..., xn)

g(t)

does not depend on θ. Further, if X ′1, ..., X
′
n are simulated from a distribution such that

for all θ, the distribution of X ′1, ..., X
′
n is the about the same as that of X1, ..., Xn, then

T is sufficient.

K

3.1.1 Formal Definition of Sufficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Formally, we define what a sufficient statistic is below.

Definition 3.1.1 (Sufficient Statistic). Suppose X1, ..., Xn
i id∼ Pθ for some θ. We then define

a statistic T = r(X1, ..., Xn) such that given T = t, the distribution of x1, ..., xn given T = t
does not depend on θ. Such a statistic T = r(X1, ..., Xn) is a sufficient statistic for θ. Notice,
the symbolic form of this definition is

f (x1, ..., xn|t = r(x1, ..., xn)) =
h(t = r(x1, ..., xn)|x1, ..., xn)f (x1, ..., xn)

g(t)

=
f (x1, ..., xn)

g(t)

for the continuous case. For the last line in the equation, we used a Dirac measure for the
event E = (t = r(x1, ..., xn)|x1, ..., xn), so δR(E) = 1 since the event is always true.

¨

With this definition, we can learn how to find a sufficient statistic from the data we are
given. It is through a method known as the factorization criterion that allows us to identify
sufficient statistics.
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Theorem 3.1.1 (Likelihood Factorization Criterion). Suppose X1, ..., Xn
i id∼Pθ for some θ ∈ Ω.

Then, a statistic T = r(X1, ..., Xn) is sufficient for θ if an only if the following holds.

L(θ|x1, ..., xn) = f (x1, ..., xn|θ) = u(x1, ..., xn)× v(r(x1, ..., xn), θ)

Notice, u can depend on X1, ..., Xn, but not θ and v can only depend on X1, ..., Xn through
r(x1, ..., xn).

Proof. We will prove this only for the discrete data only; the proof for continuous data is left
for more advanced statistics courses. In a discrete setting,

f (x1, ..., xn|θ) = P (X1 = x1, ..., Xn = xn|θ)

We will proceed in the proof by proving each side of the biconditional seperately.

1. (=⇒) Suppose f can be factored for any data we observe and any true value of the
parameter θ, that is

∀x1, ..., xn ∈ Rn and θ ∈ Ω

we have
f (x1, ..., xn|θ) = u(x1, ..., xn)× v(r(x1, ..., xn), θ)

then,

P (X1 = x1, ..., Xn = xn|T = t, θ) =
P (X1 = x1, ..., Xn = xn|θ)

P (T = t|θ) (Bayes’ Thm.)

=
P (X1 = x1, ..., Xn = xn|θ)∑

y1,...,yn∈A(t)

P (X1 = y1, ..., Xn = yn|θ)

where

A(t) = {y1, ..., yn : r(y1, ..., yn) = t}
= set of all samples where T = t

Since r(y1, ..., yn) = t for all y1, ..., yn ∈ A(t) including r(x1, ..., xn), we have (using
f (x1, ..., xn|θ) = u(x1, ..., xn)× v(r(x1, ..., xn), θ))

P (X1 = x1, ..., Xn = xn|T = t, θ) =
u(x1, ..., xn)∑

y1,...,yn∈A(t)

u(y1, ..., yn)
= constant

where

u(α1, ..., αn|θ) = function purely of α′s
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Notice if x1, ..., xn is observed such that x1, ..., xn ̸∈ A(t), then

P (X1 = x1, ..., Xn = xn|T = t, θ) = 0 = constant

and does not depend on θ. For these samples, then, T is a sufficient statistic too.

2. (⇐=) Suppose T = r(x1, ..., xn) is sufficient, then by definition

P (X1 = x1, ..., Xn = xn|T = t, θ) = u(x1, ..., xn)

Further, in a similar fashion as with the forward direction of this proof,

P (X1 = x1, ..., Xn = xn|θ) = P (X1 = x1, ..., Xn = xn|T = t, θ)P (T = t|θ)

From here, we note again u(x1, ..., xn) = P (X1 = x1, ..., Xn = xn|T = t, θ) by definition
and set v(r(x1, ..., xn), θ) = P (T = t|θ) to arrive at

P (X1 = x1, ..., Xn = xn|θ) = u(x1, ..., xn)× v(r(x1, ..., xn), θ)

which shows that a sufficient statistic can factorize the joint conditional distribution.

We have proven both sides of the biconditional; this concludes the proof. □

Note:

1. T = r(x1, ..., xn) is sufficient if and only if the likelihood L(θ|x1, ..., xn) =
f (x1, ..., xn|θ) = u(x1, ..., xn) (as a function of θ) is proportional to a function that
depends on the data only through r(x1, ..., xn) or

L(θ|x1, ..., xn) ∝ v(r(x1, ..., xn), θ)︸ ︷︷ ︸
depends only on r(x1,...,xn)

×u(x1, ..., xn)

2. When using the likelihood for finding a posterior distribution, any factor not depend-
ing on θ can be removed from the likelihood without affecting the calculation of the
posterior.

∞

Point 2 of the note above gives a corollary.

Corollary 3.1.1 (Bayesian Sufficiency). T = r(x1, ..., xn) is a sufficient statistic if and only
if the posterior depends on the data only through T for any prior we might choose, in other
words ξ(θ|x1, ..., xn) = ξ(θ|r(x1, ..., xn)).

Proof. We prove this for each side of the biconditional.
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1. (=⇒) Suppose the posterior depends on the data only by T = r(x1, ..., xn). Then,

ξ(θ|r(x1, ..., xn)) =
h(r(x1, ..., xn), θ)× ξ(θ)∫
Ω

h(r(x1, ..., xn), θ)× ξ(θ)dθ

if we assume the likelihood is factorable, then

ξ(θ|r(x1, ..., xn)) =
u(x1, ..., xn)h(r(x1, ..., xn), θ)× ξ(θ)∫
Ω

u(x1, ..., xn)h(r(x1, ..., xn), θ)× ξ(θ)dθ

=
L(θ|x1, ..., xn)ξ(θ)∫
Ω

L(θ|x1, ..., xn)ξ(θ)dθ

= ξ(θ|x1, ..., xn)

and by Likelihood Fact. Crit. we know T is a sufficient statistic.

2. (⇐=) Suppose T is a sufficient statistic, then by the Likelihood Factorization Criterion,
L(θ|x1, ..., xn) = u(x1, ..., xn)v(r(x1, ..., xn), θ). When computing the posterior, we have

ξ(θ|x1, ..., xn) =
L(θ|x1, ..., xn)ξ(θ)∫
Ω

L(θ|x1, ..., xn)ξ(θ)dθ

=
u(x1, ..., xn)v(r(x1, ..., xn), θ)ξ(θ)∫
Ω

u(x1, ..., xn)v(r(x1, ..., xn), θ)ξ(θ)dθ

=
v(r(x1, ..., xn), θ)ξ(θ)∫
Ω

v(r(x1, ..., xn), θ)ξ(θ)dθ

= ξ(θ|r(x1, ..., xn))

Hence, the posterior only depends on the sufficient statistic and is a function of θ.

Since both sides of the biconditional are proven, this concludes the proof. □

To find a sufficient statistic, we use the following steps:

Steps to Find a Sufficient Statistic

1. Find the likelihood function of the data

2. Factorize the likelihood function into u(x1, ..., xn)× v(r(x1, ..., xn), θ)

3. The function that depends only on r(x1, ..., xn) is the sufficient statistic by factorization
criterion

K
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3.1.2 Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now give some examples using the idea of sufficient statistics.

Example 3.1.2 (Poisson Sufficient Statistic). Suppose X1, ..., Xn
i id∼ Poisson(θ) where θ > 0

only. We want to find the sufficient statistic for θ. We note that the p.d.f for each Xi is

f (xi |θ) =
θxie−θ

xi !

then, the joint p.d.f is

f (x1, ..., xn|θ) =
n∏
i=1

θxie−θ

xi !

=

n∏
i=1

1

xi !︸ ︷︷ ︸
u(x1,...,xn)

× exp

(
−

n∑
i=1

xi

)
exp(−nθ)︸ ︷︷ ︸

v(r(x1,...,xn),θ)

by the likelihood factorization theorem, we know that T = r(X1, ..., Xn) =
∑n
i=1Xi is suffi-

cient for θ.

ª

Example 3.1.3 (Continuous Data). Suppose X1, ..., Xn
i id∼ f where the p.d.f is

f (xi |θ) =

{
θx θ−1 0 < x < 1

0 o.w.

The likelihood is then

f (x1, ..., xn|θ) =
n∏
i=1

θx θ−1

= θn

(
n∏
i=1

xi

)θ−1

= 1︸︷︷︸
u(x1,...,xn)

× θn
(
n∏
i=1

xi

)θ−1
︸ ︷︷ ︸
v(r(x1,...,xn),θ)

notice that u(x1, ..., xn) does not have to depend solely on the data; it can be a constant as
well. Hence, the statistic sufficient for θ is T = r(X1, ..., Xn) =

∏n
i=1Xi .
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ª

Example 3.1.4 (Normal Sufficient Statistic). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where µ is

unknown and σ2 is known. Then, the joint p.d.f can be written as

f (x1, ..., xn|θ) =
1

(2πσ2)n/2
exp

{
−
1

2

∑
(xi − µ)2

σ2

}
=

1

(2πσ2)n/2
exp

{
−
1

2σ2

∑
x2i

}
exp

{
µ

σ2

∑
xi −

nµ2

2σ2

}
then the first term is u(x1, ..., xn) since it does not depend on µ and the second term is
v(r(x1, ..., xn), θ) and depends on the data only through

T = r(X1, ..., Xn) =
∑

Xi

Hence,
∑

Xi is sufficient for θ by the likelihood factorization criterion.

ª

Example 3.1.5 (Uniform Distribution). Suppose X1, ..., Xn
i id∼U[0, θ]. We know the individual

p.d.f is

f (xi |θ) =

{
1/θ 0 ≤ x ≤ θ
0 o.w.

Then, the joint p.d.f can be written as

f (x1, ..., xn|θ) =

{
1/θn 0 ≤ xi ≤ θ ∀i
0 o.w.

Notice if 0 ≤ xi ≤ θ then we know max{x1, ..., xn} is in this interval as well. So

0 ≤ xi ≤ θ =⇒ max{x1, ..., xn} ≤ θ

We can then write the p.d.f as

f (x1, ..., xn|θ) =

{
1/θn max{x1, ..., xn} ≤ θ
0 max{x1, ..., xn} ̸≤ θ

this suggests that T = r(X1, ..., Xn) = max{X1, ..., Xn} is the sufficient statistic and

v(r(x1, ..., xn), θ) =

{
1/θn t ≤ θ
0 t ̸≤ θ
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and u(x1, ..., xn) = 1 leaving f (x1, ..., xn|θ) = u(x1, ..., xn)v(r(x1, ..., xn), θ) =

v(r(x1, ..., xn), θ). So, for a uniform distribution T = r(x1, ..., xn) = max{X1, ..., Xn} is
the sufficient statistic.

ª

3.1.3 Jointly Sufficient Statistics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now turn our attention to the case where two or more parameters are unknown. How
would calculate the jointly sufficient statistics then? To get started, suppose X1, ..., Xn

i id∼
N (µ, σ2) where both µ and σ2 are unknown. We are looking for statistics T1 and T2 such
that

T1 = r1(X1, ..., Xn)

T2 = r2(X1, ..., Xn)

If f (x1, ..., xn|T1, T2) does not depend on (µ, σ2) = θ, then we say T1 and T2 are jointly
sufficient for θ = (µ, σ2).

More generally, if X1, ..., Xn
i id∼ Pθ where θ ∈ Ω ⊂ Rk and T = (T1, ..., Tn) are statistics for θ.

Then we say that they are jointly sufficient statistics for θ when f (x1, ..., xn|T1, ..., Tn) does
not depend on θ = (θ1, ..., θn).

To find a sufficient statistic, we use what is known as the Multivariate Likelihood Factor-
ization Theorem.

Theorem 3.1.2 (Multivariate Likelihood Factorization Theorem (MLFT)). Suppose r1, ..., rk
are functions of n real variables. In other words,

Ti = ri(X1, ..., Xn) ∀i = 1, ..., k

These statistics are jointly sufficient statistics for θ if and only if

f (x1, ..., xn|θ) = u(x1, ..., xn)× v(r1, ..., rk , θ)

as before u(x1, ..., xn) can depend on the data x1, ..., xn but not on the parameters θ =
(θ1, ..., θk) and v(r1, ..., rk , θ) only depends on r1, ..., rk and θ.

Proof. We prove the biconditonal separately (only for discrete case).

1. (=⇒) [Contrapositive Method] Suppose T = (T1, ..., Tk) are not sufficient statistics.
Then we know P (X1 = x1, ..., Xn = xn|T, θ) ̸= u(x1, ..., xn) and if we set P (T = t|θ) =
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v(r1, ..., rk , θ) we see that

P (X1 = x1, ..., Xn = xn|θ) = P (X1 = x1, ..., Xn = xn|T, θ)P (T = t|θ)
̸= u(x1, ..., xn)× v(r1, ..., rk , θ)

is not possible as no joint sufficient statistics exist. Hence, the factorization we are
after does not exist.

2. (⇐=) Suppose T = (T1, ..., Tk) are sufficient statistics. Then we know P (X1 =

x1, ..., Xn = xn|T, θ) = u(x1, ..., xn) and if we set P (T = t|θ) = v(r1, ..., rk , θ) we
see that

P (X1 = x1, ..., Xn = xn|θ) = P (X1 = x1, ..., Xn = xn|T, θ)P (T = t|θ)
= u(x1, ..., xn)× v(r1, ..., rk , θ)

which is precisely the factorization criterion we are after.

We have just proven both sides of the implication, we have proven the bi-implication. This
concludes the proof. □

We now give some examples illustrating this method.

Example 3.1.6 (Normal Multi. Sufficient Statistics). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where

both parameters are unknown. The joint distribution is

f (x1, ..., xn|µ, σ2) =
n∏
x=1x

1√
2πσ2

exp

(
−
1

2

(
xi − µ
σ

)2)

=

(
1√
2πσ2

)n
exp

(
−
1

2σ2

(∑
x2i − 2µ

∑
xi + µ

2
))

= v(r1, r2, µ, σ
2)

This means for the factorization, we have u(x1, ..., xn) = 1 and the sufficient statistics are

T1 =
∑

Xi =⇒ µ̂ = x̄ =
1

n
T1

T2 =
∑

X2i =⇒ σ̂2 =
1

n
T2 −

(
1

n
T1

)2
= s(T1, T2)

The basic sufficient statistics are T1, T2 but we can use functions of them to estimate the
unknown parameters µ, σ2.

ª

Example 3.1.7 (Uniform Multi. Sufficient Statistics). Suppose X1, ..., Xn
i id∼ U[a, b] where
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a < b. We know the p.d.f for each variate is

f (x |a, b) =
1

b − a a ≤ x ≤ b

This makes the joint p.d.f as

f (x1, ..., xn|a, b) =
(
1

b − a

)n
a ≤ xi ≤ b

Notice, if xi ≥ a for each observation, then min{X1, ..., Xn} ≥ a too. Also if xi ≤ b, then
max{X1, ..., Xn} ≤ b too. This lets us reformulate the likelihood as

f (x1, ..., xn|a, b) =
(
1

b − a

)n
[min{X1, ..., Xn} ≥ a][max{X1, ..., Xn} ≤ b]

where [·] denotes the Iverson Bracket which functions as an indicator variable (1 if condition
in the bracket is true, 0 otherwise). From this, we can see that

f (x1, ..., xn|a, b) = v(r1(x1, ..., xn), r2(x1, ..., xn), a, b)

and u(x1, ..., xn) = 1 which implies that the sufficient statistics are

T1 = min{X1, ..., Xn}
T2 = max{X1, ..., Xn}

are jointly sufficient for θ = (a, b)

ª

3.1.4 Minimal Sufficient Statistics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are often several sufficient statistics for a parameter θ. These are usually functions
of the original sufficient statistics we find using the factorization theorem. We know that
X1, ..., Xn is a sufficient statistic for any parameter if

X1, ..., Xn
i id∼ Pθ

However, these jointly sufficient statistics are not useful by themselves. We would like a
summary form that is sufficient for θ, meaning they closely approximate the parameters in θ.
In other words, for the normal example given above, we know that X1, ..., Xn

i id∼N (µ, σ2) are
jointly sufficient for µ, σ2. However, we also found out that

T1 =
∑

Xi , T2 =
∑

X2i
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are also jointly sufficient for µ, σ2. Which statistics do you think are better preferred, the
data or the sums? We note that X1, ..., Xn requires us to know n values but T1, T2 only
requires us to know 2. We can show another example were we can have n sufficient statistics
where there might be less that are needed. One such example is with order statistics which
we state as a theorem.

Theorem 3.1.3 (Order Statistics Sufficiency). Order Statistics Y1, ..., Yn from sample
X1, ..., Xn are jointly sufficient for θ.

Proof. Since Y1, ..., Yn are order statistics, we know y1 ≤ y2 ≤ · · · ≤ yn. The likelihood for
the data is

f (x1, ..., xn|θ) =
n∏
x=1

f (xi |θ)

and since the order of the data is ignored for this likelihood, we could also write

f (x1, ..., xn|θ) =
n∏
x=1

f (yi |θ)

since all possible permutations of the sample are equally likely. Hence, f (x1, ..., xn|θ) only
depends on the order statistics y1, ..., yn and by the factorization criterion, we know Y1, ..., Yn
are joint sufficient statistics for θ. □

Remark 3.1.1. Intuitively, we can always determine yj from the data x1, ..., xn, but we can
never recover xj from the ordered data y1, ..., yn for any j .

♦

Using these ideas, we can define what a minimal sufficient statistic is.

Definition 3.1.2 (Minimal Sufficient Statistic). If T is sufficient and a function of every other
sufficient statistic, then T is minimal sufficient. Further, the vector (T1, ..., Tk) is minimal
sufficient when its elements are functions of every other jointly sufficient set of statistics.

¨

Remark 3.1.2. Statistics are data summaries and minimal sufficient statistics are summaries
of every other sufficient statistic.

♦

3.1.5 Bayes’ Estimation, MLE, and Sufficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We now relate Bayes’ Estimation and the MLE to the concept of Sufficiency.

Theorem 3.1.4 (MLE & Sufficient Statistics). Suppose T = r(X1, ..., Xn) is sufficient for θ,
then the MLE θ̂MLE depends on X1, ..., Xn only through T = r(X1, ..., Xn).

Proof. We know by the likelihood factorization theorem that

f (x1, ..., xn|θ) = u(x1, ..., xn)× v(r(x1, ..., xn), θ)

Further, θ̂MLE maximizes this likelihood and if we examine the log-likelihood, we get

ℓ(θ|x1, ..., xn) = log u + log v(T, θ)

since u does not depend on θ, we can ignore it when we find the maximum. This leaves
the form of the maximum solely dependent on T . Therefore, θ̂MLE must be a function of
T = r(X1, ..., Xn). □

This fact extends to multidimensional θ as well.

Theorem 3.1.5 (Bayes’ Est. & Sufficient Statistics). Suppose T = r(X1, ..., Xn) is sufficient
for θ. Then, the Bayes’ Estimator δ∗(X1, ..., Xn) is a function of r(X1, ..., Xn).

Proof. We note the form of the posterior is

ξ(θ|x1, ..., xn) ∝ f (x1, ..., xn|θ)ξ(θ) = u(x1, ..., xn)v(r(x1, ..., xn), θ)ξ(θ)
∝ v(r(x1, ..., xn), θ)ξ(θ)

since u(x1, ..., xn) does not depend on θ. Notice, that the form of the Bayes’ Estimator
depends on the form of the posterior distribution. We know the form of the posterior distri-
bution depends (is conditional) on r(x1, ..., xn). Hence, the Bayes’ Estimator also depends
on r(X1, ..., Xn) as well. □

Fact: Let θ = (θ1, ..., θk) be a real valued vector of parameters. Then also let

θ̂MLE = (θ̂1, ..., θ̂k) Maximum Likelihood Estimates

δ∗ = (δ∗1, ..., δ
∗
k) Bayes’ Estimates

Then both θ̂MLE and δ∗ depend on X1, ..., Xn only through T1, ..., Tk . Also, θ̂1, ..., θ̂k and
δ∗1, ..., δ

∗
k are all minimal sufficient statistics since they are functions of every set of sufficient

statistics. ∞

3.2 Improving an Estimator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Now that we have developed the idea of sufficiency, we can use it to gauge how well an
estimator δ(X1, ..., Xn) performs relative to the true value θ or h(θ) we are interested in. To
do this, we need some measure of this performance. One such measure is known as the MSE
or Mean Squared Error. Before we do, we also define what a generalized expectation (for
a function of the data) is.

Definition 3.2.1 (Generalized Expectation). Suppose X1, ..., Xn
i id∼ Pθ and let Z =

g(X1, ..., Xn) some function of the data X1, ..., Xn. Then, we define the generalized ex-
pectation E(Z) as

E(Z) =

∫
· · ·
∫
g(x1, ..., xn)f (x1, ..., xn|θ)dx1 . . . dxn

¨

Now we can define the MSE.

Definition 3.2.2 (MSE). Suppose we have X1, ..., Xn
i id∼Pθ and we are interested in estimating

h(θ) with δ(X1, ..., Xn). Then, we define the MSE about h(θ) R(h(θ), δ) as

MSE = R(h(θ), δ) = E([(estimate)− (true value)]2)

= E([δ(X1, ..., Xn)− h(θ)]2)

¨

Does observing a sufficient statistic change the efficacy of an estimate? We will investigate
this and to note the concept, we will call this quantity the Rao-Blackwell Estimate.

Definition 3.2.3 (Rao-Blackwell Estimator (RBE)). Suppose X1, ..., Xn
i id∼Pθ and δ(X1, ..., Xn)

and estimator of h(θ). Then, the Rao-Blackwell Estimator (RBE) is given by

δ0(T ) = E(δ(X1, ..., Xn)|T )

notice that it’s random with respect to T .

¨

We wish to compare δ0 to the original estimate δ(X1, ..., Xn). A theorem by Rao and Blackwell
let’s us do this.

Theorem 3.2.1 (Rao-Blackwell). Suppose X1, ..., Xn
i id∼ Pθ, δ(X1, ..., Xn) is an estimator for



3.2. IMPROVING AN ESTIMATOR 57

h(θ), and T = r(X1, ..., Xn) is a sufficient statistic for θ. Then,

R(h(θ), δ0) ≤ R(h(θ), δ)

and if R(h(θ), δ) <∞, then there is strict inequality unless

δ(X1, ..., Xn) = function of T

Proof. We will only prove the case where R(h(θ), δ) < ∞ since R(h(θ), δ) = ∞ implies
that there is nothing to prove (R(h(θ), δ0) ≤ ∞ anyway). We note that since V (Y ) =
E(Y 2)− [E(Y )]2 ≥ 0 we know [E(Y )]2 ≤ E(Y 2) for any random variable Y . Because of this,
we can see that

E[(δ(X1, ..., Xn)− h(θ))]2 ≤ E[(δ(X1, ..., Xn)− h(θ))2]

If we condition on T , then we get we also see

E[(δ(X1, ..., Xn)− h(θ)|T )]2 ≤ E[(δ(X1, ..., Xn)− h(θ))2|T ]

and since E[δ(X1, ..., Xn) − h(θ)|T ] = E(δ(X1, ..., Xn)|T ) − h(θ) = δ0 − h(θ) we can write
the equivalent form

[δ0 − h(θ)]2 ≤ E[(δ(X1, ..., Xn)− h(θ))2|T ]

From here, we take the expected value with respect to T to marginalize it out, yielding

[E(δ0 − h(θ))2] ≤ E{E[(δ(X1, ..., Xn)− h(θ))2|T ]} = E[(δ(X1, ..., Xn)− h(θ))2]

where the equality is given by the law of iterated expectation. We can rewrite the above as

R(h(θ), δ0) ≤ R(h(θ), δ)

by definition of MSE. This proves the Rao-Blackwell Theorem and concludes the proof. □

We can also define another type of error to see how well our estimator performs known as
the Mean Absolute Error or MAE. We define it below

Definition 3.2.4 (Mean Abs. Error (MAE)). The Mean Absolute Error or MAE is defined
as a mean deviation R(θ, δ) such that

R(θ, δ) = E(|δ(X1, ..., Xn)− θ|)

¨

To see if an estimator is working above all others in terms of error we use the concepts of
inadmissibility and admissibility.
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Definition 3.2.5 (Inadmissible Estimator). For their MSE or MAE, we have an estimator δ
is inadmissible if there is another estimator δ0 such that

R(θ, δ0) ≤ R(θ, δ) ∀θ ∈ Ω

with a strict inequality for at least one θ ∈ Ω. In other words, δ0 has a lower MSE or MAE
for at least one θ and never has higher MSE or MAE.

We also say in this case that δ0 dominates δ.

¨

Definition 3.2.6 (Admissible Estimator). We say an estimator δ is admissible when there is
no other estimator δ0 that dominates δ.

¨

Remark 3.2.1. Notice if δ0 = E[δ(X1, ..., Xn)|T ], then δ0 will dominate δ by the Rao-
Blackwell Theorem. Therefore, if we can conclude that an estimator δ is a function of the
data not only through a sufficient statistic it is dominated by δ0. Hence, such an estimate is
inadmissible.

♦

We now give an example illustrating this process.

Example 3.2.1 (Customer Arrivals). Suppose the number of customer arrivals within some
amount of time is modeled by the Poisson distribution. If we set Xi to be the ith count of
arrivals for the ith interval check, then we say X1, ..., Xn

i id∼Poisson(θ) where θ is the unknown
parameter we are interested in estimating. θ measures the rate of occurrence of customers
arriving. We wish to estimate the chance of exactly one customer arriving in some time
interval. To build an estimator for this chance, we first define

Yi =

{
1 if Xi = 1

0 o.w.

It is then known that Yi
i id∼ Bernoulli(p) where p = P (Xi = 1) = θe−θ = h(θ). We estimate p

with p̂ =
∑
Yi/n. Hence, δ(X1, ..., Xn) =

∑
Yi/n. Now, for the Poisson Process X1, ..., Xn
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we know T =
∑
Xi is sufficient. So, for one observation, we have

E(Yi |T = t) = P (Xi = 1|T = t) (Yi = [Xi = 1])

=
P (Xi = 1, T = t)

P (T = t)

=
P (Xi = 1)P

(∑
j ̸=i Xj = t − 1

)
P (T = t)

Since the sum of independent Poisson distributions are Poisson themselves, we have

P (T = t) =
enθ(nθ)t

t!

and also

P (X1 = 1)P

(∑
j ̸=i

Xj = t − 1

)
= θe−θ ×

e−[n−1]θ ([n − 1]θ)t−1

(t − 1)!

taking the ratio of these two quantities gives

E(Yi |T = t) =
t

n

(
1−
1

n

)t−1
notice that if t = 0, we know E(Yi |T = 0) = 0. The Rao-Blackwell estimator δ0 is then

δ0(t) = E(δ(X1, ..., Xn)|T = t)

= E

[
1

n

∑
Yi

∣∣∣∣T = t]
=
1

n

n∑
i=1

E [Yi |T = t]

=
1

n

[
n∑
i=1

t

n

(
1−
1

n

)t−1]

=
t

n

(
1−
1

n

)t−1
In practice, this estimator for p performs better than δ(X1, ..., Xn) since it has a lower MSE.
Notice that δ(X1, ..., Xn) is inadmissible.

ª
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Chapter 4 — Sampling Distributions of Esti-
mators

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter we discuss how estimators (such as the sample mean) can have distributions
and their various properties. Recall that if we have X1, ..., Xn

i id∼ Pθ : θ ∈ Ω, we can calculate
some statistic T = r(X1, ..., Xn) that estimates θ or T ∈ Ω to be more precise. All estimators
are random in nature, so they too have a probability distribution and we define them as follows.

Definition 4.0.1 (Sampling Distribution). Under any valid statistical model Pθ with statistic
T , we call fT (t|θ) the sampling distribution of T given θ.

¨

Note: We could also calculate a quantity called T (X1, ..., Xn, θ) and this would not be a
statistic for an unknown θ, but as a function of X1, ..., Xn it has a probability distribution
induced by the distribution of X1, ..., Xn. ∞

One popular statistic for the probability distribution of T is Eθ(T ) which is the mean of T .

Example 4.0.1 (Bernoulli Distribution). Suppose X1, ..., X40
i id∼ Bernoulli(θ). Then,

θ̂ =

∑40
i=1Xi
40

= T

then, 40T ∼ Bin(40, θ) where t ∈ {0, 1/40, 2/40, ..., 1}.

ª

Example 4.0.2 (MLE of µ). Suppose X1, ..., Xn
i id∼N (µ, σ2) and we estimate the mean with

the MLE or µ̂ = x̄ . We can show that

X̄ ∼ N
(
µ,
σ2

n

)
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Note: this is not by the CLT, this is an exact distribution.

ª

4.1 Need for Sampling Distributions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In our setup so far, we have θ = the unknown parameter, X1, ..., Xn
i id∼Pθ and T = r(X1, ..., Xn)

as a statistic and estimator of θ. We are now interested in an ideal θ̂ = T = r(X1, ..., Xn),
that is, one ’close’ to θ. How might we measure this?

There are many ways. One possibility is to look at the chance

P (
∣∣θ̂ − θ∣∣ < ϵ)

for some small value ϵ, e.g ϵ = 0.1. Ideally, for small ϵ, we would like the probability above
to be high. This makes θ̂ a ’close’ estimator.

Example 4.1.1. Suppose X1, ..., X3
i id∼ exp(θ). We know

f (x) = θe−θx x > 0; θ > 0

and pick the statistic T =
∑
i Xi ∼ Gamma(3, θ). Further we have,

θ̂MLE =
1

X̄
=

3∑
i Xi
=
3

T

θ̂Bayes’ =
4

3 + T
(θprior ∼ Gamma(α = 1, β = 2))

This makes

G(θ) = P (
∣∣θ̂ − θ∣∣ < ϵ|θ)

= P (−ϵ < θ̂ − θ < ϵ|θ)
= Fθ̂(θ + ϵ)− Fθ̂(θ − ϵ) ≈ dFθ̂

Now, we know

Fθ̂(t) = P
(
θ̂ ≤ t|θ

)
= P

(
T ≥

3

t

∣∣∣∣θ) for MLE

= P

(
T ≥

4

t
− 2
∣∣∣∣θ) for Bayes’

In practice, we will manually plug in values for θ for a chosen ϵ and generate a probability
function G that describes the chance of observing each probability for a fixed θ. This works
for the MLE. To find the value P (

∣∣θ̂ − θ∣∣ < ϵ), we take the mean of E[θ] using G as the
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distribution function and use it in P (
∣∣θ̂ − θ∣∣ < ϵ). For the Bayes’ estimate, we simply compute

E [G(θ)] using the prior distribution ξ(θ) giving

E[G(θ)] =

∫
Ω

G(θ)ξ(θ)dθ = P (
∣∣θ̂ − θ∣∣ < ϵ)

ª

Note: We can also calculate

P

(∣∣∣∣∣ θ̂θ − 1
∣∣∣∣∣ ≤ ϵ

∣∣∣∣θ
)

for a fixed ϵ, say ϵ = 0.1. Now,
θ̂

θ
=
3

θT

where θT ∼ Gamma(α = 3, β = 1), whence

P

(∣∣∣∣∣ θ̂θ − 1
∣∣∣∣∣ ≤ ϵ

∣∣∣∣θ
)
= 0.134

does not depend on θ. ∞

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will need several several sampling distributions that arise frequently in inferences.

1. χ2m distribution

2. tm distribution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 χ2-distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The χ2 distribution has its roots in the Gamma distribution and is a a Gamma distribution
with special parameters. Suppose X ∼ Gamma(α, β), then X can be described by the p.d.f

f (x) =
βα

Γ(α)
xα−1e−βx x > 0;α, β > 0

Notice when β = 1, we the gamma integral Γ(α) becomes

Γ(α) =

∫ ∞
0

xα−1e−xdx = (α− 1)!
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typically we assume α is an integer for our calculations. If we let α = m
2

and β = 1
2
, then we

can rewrite the p.d.f as

f (x) =

(
1
2

)m/2
e−x/2xm/2−1

Γ(m
2
)

=
xm/2−1e−x/2

2m/2Γ(m
2
)

Further, if m = 1, then we have

f (x) =
x−1/2e−x/2√
2Γ(1/2)

(X ∼ χ21 = Gamma(1/2, 1/2))

and we can show that
Γ(1/2) =

√
π

For the general distribution where α = m
2

and β = 1
2
, we know the moment generating

function (MGF) ψ is

ψX(t) =

(
1

1− 2t

)m
2

and the mean and variance of X ∼ Gamma(m/2, 1/2) is

E(X) = m V (X) = 2m

The χ2 distribution can also be related to the normal distribution since if Y ∼ N (0, 1) then
Y 2 ∼ χ21. We now give a proof of this fact.

Theorem 4.1.1 (Square of Normal). If Y ∼ N (0, 1), then Y 2 ∼ χ21 = Gamma(1/2, 1/2).

Proof. We begin with Y ’s c.d.f and use it to construct W = Y 2’s c.d.f too. We reason as
follows

F (w) = P (W ≤ w) = P (Y 2 ≤ w)
= P (−

√
w ≤ Y ≤

√
w)

= Φ(
√
w)−Φ(−

√
w) (Φ = cum. norm. c.d.f)
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then,

f (w) = F ′(w)

= φ(
√
w)

(
1

2
y−1/2

)
+ φ(−

√
w)

(
1

2
y−1/2

)
(φ = norm. p.d.f, chain rule)

= φ(
√
w)
(
y−1/2

)
(φ(−

√
w) = φ(

√
w))

= (
√
2π)−1w−1/2e−w/2

=
w−1/2√
2π

e−w/2

=
wα−1e−βw

21/2π1/2
(β = 1/2, α = 1/2)

=
βα

Γ(α)
× wα−1e−βw

The last form impliesW = Y 2 ∼ Gamma(α = 1/2, β = 1/2) = χ21 as we sought to show. □

Why do we need the above theorem? It allows us to prove some facts about sums of squares
of normal distributions. Among some, we can prove that if X1, ..., Xn

i id∼ N (µ, σ2), then

Facts About Sums of Sq. of Normal

n∑
i=1

X2i ∼ χ2n (if µ = 0, σ2 = 1)

1

σ2

n∑
i=1

(Xi − X̄)2 ∼ χ2n−1

1

σ2

n∑
i=1

(Xi − µ)2 ∼ χ2n (µ unknown)

K

4.1.2 t-distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using the χ2 distribution, we can create another type of distribution known as the t-distribution.
Suppose Y ∼ χ2m, Z ∼ N (0, 1), and Y ⊥⊥ Z, then we say that X ∼ tn−1 when

X =
Z√
Y/m

(m = degree of freedom)
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The probability density function of a t-distribution with m degrees of freedom (df) can be
written as

f (x) =
Γ(m+1

2
)

√
mπΓ(m

2
)

(
1 +

x2

m

)−m+1
2

The t-distribution has finite absolute moments up to its degree of freedom m. That is,

E
(∣∣Xk ∣∣) <∞ for k < m

Note, however, the MGF for a t-distribution does not exist. The t-distributions we will discuss
are all central and have a mean of 0 or E(X) = 0. Further, the variance can be given as

V (X) =
m

m − 2 for m > 2

To derive the p.d.f of t, we set the two random variables that make it up as independent
or Y ⊥⊥ Z. As a reminder, Y ∼ χ2m and Z ∼ N (0, 1). We then create two new random
variables X and W such that

X =
Z√
Y/m

W = Y

To find the t-distribution density, we first find the joint distribution of X and W . Notice that
both Y and Z can be written as functions of X and W or

Z = s1(X,W ) = X ×
(
W

m

)1/2
Y = s2(X,W ) = W

So, when we compute the joint distribution of X,W we are using a transformation of variables.
Hence, we can write

fX,W (x, w) = fY,Z(s1(x, w), s2(x, w))× det(J)

where

J =

∂Z/∂X ∂Y/∂X

∂Z/∂W ∂Y/∂W


Now, fX,W (x, w) = fW (w)× fX|W=w(x) by conditional probability and to obtain the marginal
distribution of X integrate out W . That is, compute∫ ∞

0

fW (w)× fX|W=w(x)dw = fX(x)

Note: The t-distribution is symmetric like normal. Also, as m →∞ the t-distribution tends
to a standard Normal distribution. Notice, that when m = 1, the t-distribution is a Cauchy
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distribution:

f (t|m = 1) =
Γ(1)√
πΓ(1/2)

(
1 +

x2

1

)−1
=

1

π(1 + x2)

∞

4.1.3 Using χ2 and t in Inferences
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So, how to we use these distribution’s in practice? We will show the following facts which
are useful for statistical inference:

Facts for Statistical Inference

1. (n − 1)σ̂2 =
∑n
i=1(Xi − X̄)2 ∼ χ2n−1 · σ2

2. If X̄ ∼ N (µ, σ2) and σ̂2, X̄ are independent, then

X̄ − µ√
σ̂2/n

∼ tn−1

K

For these facts, we need the concept of an orthogonal transformation from linear algebra.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Orthogonal Transformation Facts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 4.1.1 (Orthogonal Matrix). A matrix An×n is orthogonal if

A′ = A−1

In other words, an orthogonal matrix is a norm-preserving operation for all vectors in the
subspace it acts on. Each vector the makes up the column space of A forms an orthonormal
basis. We can also say

AA′ = A′A = In×n

¨

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.1.2 (Determinate Value). For an orthogonal matrix A, we know |det(A)| = 1.
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Proof. Since A = A′ by definition, we know det(A) = det(A′). Further, it known as property
of determinants that for any matricies A and B that

det(AB) = det(A) · det(B)

It then follows that

det(AA′) = det(A) det(A′)

= (det(A))2 = 1 (A is orthogonal)

=⇒ |det(A)| = 1

as we sought to show. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.1.3 (Norm Preservation). If the matrix A is orthogonal and Ax = y for any
vectors x, y , then ||y || = ||x ||. Note that || · || signifies the norm or length of the vector.

Proof. We compute the norm of y as follows

||y ||2 =
∑
i

y 2i = y
′y = (x ′A′)(Ax) (y = Ax)

= x ′A′A︸︷︷︸
I

x

= x ′x =
∑
i

x2i

= ||x ||2

Which is what we sought to show. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With these facts in mind, we can start with some statistical facts about normal distributions
and their transformations.

Theorem 4.1.4 (P.D.F of Orthogonal Transformation). Suppose X1, ..., Xn
i id∼ N (0, 1) and

An×n is orthogonal with y = Ax , then Y1, ..., Yn
i id∼ N (0, 1).

Proof. We note the joint distribution of the X1, ..., Xn’s is

f (x1, ..., xn) =
1

(2π)n/2
exp

(
−
1

2

∑
i

x2i

)

In this setting, we perform the transformation x = A−1y where A is orthogonal. Because of
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Norm Preservation, we know
∑
i x
2
i =

∑
i y
2
i , we can write the joint p.d.f of Y1, ..., Yn as

f (y1, ..., yn) = |J| · f (x1, ..., xn)

= 1 ·
1

(2π)n/2
exp

(
−
1

2

∑
i

y 2i

) (
J = A and

∑
i

x2i =
∑
i

y 2i

)

which is the joint distribution of Y1, ..., Yn
i id∼ N (0, 1). This concludes the proof. □

Lemma 4.1.1 (Independece of X̄ and S2). Suppose X1, ..., Xn
i id∼ N (µ, σ2) and we define

S2 =
∑
i(Xi − X̄)2 and X̄ = 1

n

∑
i Xi . Then, X̄ ⊥⊥ S2.

Proof. Suppose we have Z1, ..., Zn
i id∼ N(0, 1). Then, let

u′ =

(
1√
n
, . . . ,

1√
n

)
be a row vector. Then define an orthogonal transformation A such that

A =


u′

row 2
...

row n


where it is constructed using the Gram-Schmidt method. Let Y = AZ and we have Y1, ..., Yn

i id∼
N (0, 1) as well as

Y1 = u
′Z =

n∑
i=1

Zi =
√
nZ̄

which implies

n∑
i=2

Y 2i =

n∑
i=1

Y 2i − Y 21

=

n∑
i=1

Z2i − nZ̄2
(∑

Z2i =
∑

Y 2i , Y1 =
√
nZ̄
)

=

n∑
i=1

(Zi − Z̄)2

Since each Yi are mutually independent, we know
∑n
i=2 Y

2
i ⊥⊥ Y1 and by the alternative forms
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given above, we have
√
nZ̄ ⊥⊥

n∑
i=1

(Zi − Z̄)2

which implies

Z̄ ⊥⊥
n∑
i=1

(Zi − Z̄)2

Now, when X1, ..., Xn
i id∼ N (µ, σ2) we can write

Zi =
Xi − µ
σ

=⇒ Z̄ =
1

σ

(
X̄ − µ

)
and

n∑
i=1

(Zi − Z̄)2 =
1

σ2

n∑
i=1

(Xi − X̄)2

but since Xi ’s are the only random quantities in the equations above, we have

X̄ ⊥⊥
n∑
i=1

(Xi − X̄)2 = S2

This concludes the proof. □

Theorem 4.1.5 (Distn. of S2). If X1, ..., Xn
i id∼N (µ, σ2), then S2 =

∑
i(Xi− X̄)2 ∼ χ2n−1 ·σ2.

Proof. With the addition and subtraction of X̄ in (Xi − µ)2 we can rewrite it as

(Xi − µ)2 = (Xi − X̄)2 + (X̄ − µ)2 − 2(Xi − X̄)(X̄ − µ)

the sum of the above indexing by i becomes

n∑
x=1i

(Xi − µ)2 =
n∑
i=1

(Xi − X̄)2 + n(X̄ − µ)2

since
∑
i(Xi − X̄) = 0. If we divide by the variance of the Xi ’s σ2, then we get

n∑
i=1

(
Xi − µ
σ

)2
︸ ︷︷ ︸

C

=

n∑
i=1

(
Xi − X̄
σ

)2
︸ ︷︷ ︸

A

+

(
X̄ − µ
σ/
√
n

)2
︸ ︷︷ ︸

B

Now, the C is the sum of squared standard normals, so it is distributed χ2n and B is a squared
standard normal, so it is distributed χ21. We know A ⊥⊥ B by Indepenence Lemma. Since
only sums of squares of independent standard normal variates make up a χ2 variate, it is then
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apparent that A ∼ χ2n−1 which implies that

S2 =
∑
i

(Xi − X̄)2 ∼ χ2n−1 · σ2

as we sought to show. □

With these facts in mind, we can derive one important fact about the sampling distributions of
the standardized sample mean using the sample variance σ̂2 as an estimator of the population
variance σ2.

Theorem 4.1.6 (Distribution of t-statistic). The random quantity (X̄ − µ)/
√
σ̂2/n follows

a t-distribution with n − 1 degrees of freedom.

Proof. We will find an alternative from of the expression

X̄ − µ√
σ̂2/n

We reason as follows

X̄ − µ√
σ̂2/n

=
X̄ − µ√
σ̂2/n

·
1/
√
σ2/n

1/
√
σ2/n

X̄ − µ√
σ̂2/n

=
(X̄ − µ)/(

√
σ2/n)√

σ̂2/σ2

∼
N (0, 1)√
χ2n−1/n − 1

= tn−1

where the last line came from the facts:

E(X̄) = µ V (X̄) = σ2/n

(n − 1)σ̂2 =
n − 1
n − 1S

2 = S2 ∼ χ2n−1 · σ2

=⇒
σ̂2

σ2
∼ χ2n−1/n − 1

This concludes the proof. □
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Chapter 5 — Confidence Intervals (CIs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The basic idea behind a confidence interval is to find an interval [A,B] such that

P (θ ∈ [A,B]) ≥ 1− α = γ

where we determine/choose the significance level α. Here, we have A and B as functions of
the data we have soon to be collected X1, ..., Xn. In other words,

A = A(X1, ..., Xn) B = B(X1, ..., Xn)︸ ︷︷ ︸
functions of X1,...,Xn

The probability statement is about A,B as functions of random variables X1, ..., Xn not about
θ, which is considered fixed.

Example 5.0.1 (CI for Log. Rainfall). Suppose X1, ..., Xn
i id∼ N (µ, σ2) where

Xi = log rainfall

X̄ = sample avg/mean log rainfall

σ′ = estimator of σ

Then, by our previous theorems about the t-distribution, we know

U =

√
n(X̄ − µ)
σ′

∼ tn−1

where U does not depend on an unknown parameter, i.e. the distribution is tn−1 for all possible
µ we may have. We can find values [a, b] such that

P (a ≤ U ≤ b) ≥ 1− α = γ

and by symmetry of the t-distribution we can choose a = −b; call it c . This then gives us

P (−c ≤ U ≤ c) ≥ 1− α = γ

To get the equality in the above statement, we will set c = T−1n−1 (1− α/2) which is the
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(1− α/2)th quantile of the t-distribution. With this, we can derive the interval as follows:

P

(
−c ≤

√
n(X̄ − µ)
σ′

≤ c
)
= P

(
−cσ′ ≤

√
n(X̄ − µ) ≤ cσ

)

= P

X̄ − c σ′√n︸ ︷︷ ︸
random

≤ µ︸︷︷︸
fixed

≤ X̄ + c
σ′√
n︸ ︷︷ ︸

random

 = 1− α
This makes the (1− α/2)100% CI as

[A,B] =

[
X̄ − c

σ′√
n
, X̄ + c

σ′√
n

]
If we let 1−α = γ = 0.95, then we find c = T−125 (0.975) = 2.060 and c/

√
n = 2.060/

√
26 ≈

0.404. Hence, the bounds for the interval are

A = X̄ − 0.404σ′

B = X̄ + 0.404σ′

in this case.

ª

5.1 One/Two-Sided CIs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With this example, we can now give a formal definition of a confidence interval.

Definition 5.1.1 (Two-Sided CIs). Suppose X1, ..., Xn
i id∼Pθ : θ ∈ Ω and g(θ) is only a function

of θ, then if
P (A ≤ g(θ) ≤ B) ≥ 1− α = γ

we can say the interval [A,B] is a coefficient γ confidence interval for g(θ). Further, if we
have

P (A ≤ g(θ) ≤ B) = γ

the CI [A,B] is called exact.

¨

Note: The γ confidence coefficient is a statement about the chance the sample statistics will
lead to an interval containing g(θ). In addition, the statement P (A ≤ g(θ) ≤ B) ≥ γ does
not uniquely define an interval. For instance, any two values A = T−1n−1(γ1) and B = T−1n−1(γ2)
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such that γ2 − γ1 = γ where γ2 > γ1 will create a (γ)100% CI. We can thus write,

P
(
T−1n−1(γ1) ≤ g(θ) ≤ T−1n−1(γ2)

)
= γ

for any CI with CI coefficient γ. When the distribution is Normal, we can have an exact CI
for the population mean µ. In practice, we choose γ1 = 1 − γ2 (equal areas on both ends)
because it provides the shortest interval. ∞

If we are only interested in a one-sided interval (one with an upper or lower limit that is
infinite) as we could be when we are estimating λ from an exponential distribution, then we
have a definition of it as such:

Definition 5.1.2 (One-Sided CIs). Suppose X1, ..., Xn
i id∼Pθ : θ ∈ Ω and g(θ) is only a function

of θ, then if
P (A ≤ g(θ)) ≥ 1− α = γ

or
P (g(θ) ≤ B) ≥ 1− α = γ

then, we have a one-sided coefficient γ CI where A is the lower confidence limit and B is
the upper confidence limit.

¨

For the mean of a normal distribution µ, we have the upper and lower bounds for one-sided
CIs as

A = X̄ + T−1n−1(γ)
σ′√
n

B = X̄ − T−1n−1(γ)
σ′√
n

∞

5.2 Pivotal Quantities
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to construct CIs, we need to make sure we have what are known as pivotal quantities.
These quantities allow us to isolate the desired quantity (parameter) and form a probability
statement about it. We define a pivotal quantity as follows:

Definition 5.2.1 (Pivotal Quantity). Suppose X1, ..., Xn
i id∼ Pθ : θ ∈ Ω, then if we can make a

random variable V (X1, ..., Xn, θ) whose distribution is the same for all θ, then V is called the
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pivotal quantity or pivotal. Such a pivotal is useful for constructing a CI for g(θ) if there is
a function r that can ’invert’ the pivotal to isolate g(θ). In other words,

r(V (X1, ..., Xn, θ), X1, ..., Xn) = g(θ)

¨

Example 5.2.1 (Identifying a Pivotal). To give an idea for it we note here that X̄−µ
σ′/
√
n

is a
pivotal quantity when the data is Normally distributed. For example, U ∼ Tn−1 for all values
of µ and the function’s image that inverts this pivotal is given by

r(V,X1, ..., Xn) = g(θ) = µ = X̄ − u
σ′√
n

ª

Using the idea of a pivotal, we can formally define the endpoints for a CI.

Theorem 5.2.1 (Endpoints for CI). Suppose X1, ..., Xn
i id∼ Pθ : θ ∈ Ω and a pivotal

V (X1, ..., Xn, θ) exists. Let G = c.d.f of V that is,

G(v) = P (V ≤ v) (continuous)

If we then also assume r exists and is strictly increasing in V for each X1, ..., Xn and define
the confidence limits as

0 < γ < 1 γ2 > γ1 γ2 − γ1 = γ

then the following statistics are endpoints of an exact γ coefficient CI for g(θ):

A = r
(
G−1(γ1), X1, ..., Xn

)
B = r

(
G−1(γ2), X1, ..., Xn

)
Proof. Since r is strictly increasing, we know that for any constants c1, c2 such that

c1 < V < c2

we equivalently have

r(c1, X1, ..., Xn) < g(θ) < r(c2, X1, ..., Xn)
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If we then set ci = G−1(γi) for i ∈ {1, 2}, then we have

P
(
G−1(γ1) < V < G−1(γ2)

)
= P

(
r(G−1(γ1), X1, ..., Xn) < g(θ) < r(G−1(γ2), X1, ..., Xn)

)
= P (A < g(θ) < B) = γ

which implies

A = r
(
G−1(γ1), X1, ..., Xn

)
B = r

(
G−1(γ2), X1, ..., Xn

)
as we sought to show. We can make a similar argument for a one-sided interval. □

Example 5.2.2 (CI for µ). For the CI for µ when we sample from Normal, we have G = Tn−1
and

γ1 =
γ

2

γ2 =
γ

2

since we want a symmetric interval. The inverting function r is given by

r = X̄ − T−1n−1(·)
σ′√
n

Notice it is only a function of X1, ..., Xn and G−1 = T−1n−1 which lets us write it as r =
r(G−1(·), X1, ..., Xn). In previous examples we found out that

A = X̄ − G−1(γ1)
σ′√
n
= r(G−1(γ1), X1, ..., Xn)

B = X̄ − G−1(γ2)
σ′√
n
= r(G−1(γ2), X1, ..., Xn)

which is the same form as we derived in Endpoints for CI

ª

Example 5.2.3 (Approx. CI for Poisson). Suppose X1, ..., Xn
i id∼ Poisson(θ) and we sample n

large so X̄ = θ̂ ∼ N (θ, θ/n). We know by the Delta Method that 2X̄1/2
appx∼ N (2θ1/2, 1/n)

and this allows us to state

P
(∣∣2X̄1/2 − 2θ1/2∣∣ < c

)
≈ 2Φ(cn1/2)− 1



5.2. PIVOTAL QUANTITIES 76

which implies that an approximate CI for 2θ1/2 is

2θ1/2 ∈
[
−c + 2X̄1/2, c + 2X̄1/2

]
For an interval for θ, we then perform inverse (monotonic) operations to isolate it:

2θ1/2 ∈
[
−c + 2X̄1/2, c + 2X̄1/2

]
=⇒ θ1/2 ∈

[
−c/2 + X̄1/2, c/2 + X̄1/2

]
=⇒ θ ∈

[
(−c/2 + X̄1/2)2, (c/2 + X̄1/2)2

]
If we want a 95% CI for θ assuming n = 100 we simply set c = 0.196 in the above expression.

ª
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Chapter 6 — Credible Intervals (CDIs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Credible intervals (CDIs) are a Bayesian analogue of Frequentist confidence intervals. How-
ever, since the population parameters are random variables, we interpret them differently.
There are still endpoints A,B such that θ ∈ [A,B] only A,B are usually dependent on the
data as well as parameters for θ’s prior (or posterior) distribution. The probability statement
we make is

P

(
A︸︷︷︸

fixed

≤ θ︸︷︷︸
random

≤ B︸︷︷︸
fixed

)
≥ 1− α = γ

and is interpreted as ‘there is chance ≥ 1−α that the interval [A,B] contains θ’. Notice how
this is different from the frequentist interpretation where the endpoints A,B are random and
the one we observed is from a set that contains θ (1− α)100% of the time. More formally,
we define a credible interval as follows:

Definition 6.0.1 (Credible Interval). Suppose X1, ..., Xn
i id∼ Pθ : θ ∈ Ω and θ ∼ D. Then we

say we have a 1− α = γ credible interval when

P (A ≤ θ ≤ B) = γ

where A,B are quantiles of distribution D.

¨

Our focus with credible intervals are on samples from a Normal Distribution. So we will give
a view of this distribution from the Bayesian perspective.

6.1 Bayesian Analysis of samples from a Normal Distri-
bution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Bayesian statistics, the variance gives information about how well our minds know what
values a parameter can take. When the variance is high, we can say we have low precision
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about the parameter and when it is low we can say we high precision about the parameter.
We formalize this concept below

Definition 6.1.1 (Precision). The reciprocal of the variance σ2 is known as the precision of
the random quantity θ we are interested in. We denote the precision with τ and have

τ =
1

σ2

¨

If we have X1, ..., Xn
i id∼N (µ, τ), then in Bayesian Analysis µ, τ are random variables with prior

distributions. We have seen estimates of µ based on the posterior distribution ξ(µ|x1, ..., xn)
under the squared error loss and that the Bayes’ Estimator was the mean of the posterior
distribution.

When both µ, τ are unknown, however, we need to specify priors for both parameters. In
Bayesian statistics, we specify the density of a normal variate X as

f (x |µ, τ) =
( τ
2π

)1/2
exp

{
−
1

2
τ(x − µ)2

}
and the joint density of X1, ..., Xn is thus

f (x1, ..., xn|µ, τ) =
( τ
2π

)n/2
× exp

{
−
1

2
τ

n∑
i=1

(xi − µ)2
}

We desire a prior ξ(µ, τ) that is a conjugate prior jointly for (µ, τ) so that a Bayesian update
using the data yields a distribution that is of the same family as ξ(µ, τ). By probability laws,
we know ξ(µ, τ) = ξ1(µ|τ)ξ2(τ). To find ξ1(µ|τ) recall that when σ2 = τ−1 was assumed
known we showed that the family of Normal priors was a conjugate family of priors, i.e. it
resulted in the posterior also being a Normal distribution. It is then natural to have ξ1(µ|τ)
as a normal distribution with precision λ0τ .

More specifically, we write ξ1(µ|τ) as

ξ1(µ|τ) =
(
λ0τ

2π

)
exp

{
−
1

2
λ0τ(µ− µ0)2

}
and set τ ∼ Gamma(α0, β0), making the p.d.f of it as

ξ2(τ) =
βα00 τ

α0−1e−β0τ

Γ(α0)

and in terms of proportions this gives

ξ2(τ) ∝ τα0−1e−β0τ
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Note: βα00 /Γ(α0) is a constant that allows the integral with respect to τ to integrate to
1—it does not affect the shape of the distribution. ∞

When we multiply ξ1(µ|τ) and ξ2(τ) to make ξ(µ, τ), we have what is known as a Normal-
Gamma Prior with hyper-parameters µ0, λ0, α0, β0.

Under these specific priors, we will show that the family of joint priors (for µ, τ) is a conjugate
family of joint distributions. This, in turn, with then imply that the joint posterior of µ, τ
is also of the same family of distributions, i.e. we have a Normal-Gamma Posterior with
hyper-parameters µ1, λ1, α1, β1. Before we do this, we give some notation used in the proof:

Notation: We use the following notation for averages (sample) and sums of square deviations

X̄ =
1

n

n∑
i=1

Xi

S2 =

n∑
i=1

(Xi − X̄)2︸ ︷︷ ︸
not dividing by n here

K

Theorem 6.1.1 (Normal-Gamma Posterior). Suppose X1, ..., Xn
i id∼ N (µ, τ) where µ, τ are

both unknown and the supports (domains) for both are

−∞ < µ <∞ τ > 0

Then, if µ|τ ∼ N (µ0, λ0τ) where µ0, λ0 > 0 and τ ∼ Γ(α0, β0) where α0, β0 > 0 we have

(µ|τ, x1, ..., xn) ∼ N (µ1, λ1τ)
(τ |x1, ..., xn) ∼ Γ(α1, β1)

where

µ1 =
λ0µ0 + nx̄

λ0 + n
λ1 = λ0 + n

α1 = α0 +
n

2
β1 = β0 +

1

2
s2 +

nλ0(x̄ − µ0)2

2(λ0 + n)

Proof. We will begin with the proportional form of the posterior distribution ξ(µ, τ |x1, ..., xn):

ξ(µ, τ |x1, ..., xn) ∝ f (x1, ..., xn|µ, τ)ξ1(µ|τ)ξ2(τ)
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∝ τn/2 exp

{
−
1

2
τ

n∑
i=1

(xi − µ)2
}
× τ1/2 exp

{
−
1

2
λ0τ(µ− µ0)2

}
× τα0−1 exp {−β0τ}

= τα0+
n+1
2
−1 exp

{
−
1

2
τ

[
n∑
i=1

(xi − µ)2 + λ0(µ− µ0)2
]
− β0τ

}

= τα0+
n+1
2
−1 exp

{
−
1

2
τ
[
s2 + n(x̄ − µ)2 + λ0(µ− µ0)2

]
− β0τ

}

= τα0+
n+1
2
−1 exp

−12τ [n(x̄ − µ)2 + λ0(µ− µ0)2]︸ ︷︷ ︸
A

 · exp{−τ(s2/2 + β0)}

From here we note that A can be simplified as follows

n(x̄ − µ)2 + λ0(µ− µ0)2 = n(x̄2 − 2x̄µ+ µ2) + λ0(µ2 − 2µµ0 + µ20)
= µ2(n + λ0)− 2µ(nx̄ + λ0µ0) + (λ0µ20 + nx̄2)

= (n + λ0)

[
µ2 − 2µ

(
λ0µ0 + nx̄

n + λ0

)
+

(
λ0µ

2
0 + nx̄

2

n + λ0

)]
= (n + λ0)

[(
µ−

nx̄ + λ0µ0
n + λ0

)2
+
(λ0µ

2
0 + nx̄

2)(n + λ0)

(n + λ0)2

−
(nx̄ + λ0µ0)

2

(n + λ0)2

]
= (n + λ0)

[(
µ−

nx̄ + λ0µ0
n + λ0

)2
+
µ20(nλ0)− 2nλ0x̄µ0 + λ0nx̄2

(n + λ0)2

]

= (n + λ0)

(
µ−

nx̄ + λ0µ0
n + λ0

)2
+
nλ0(µ0 − x̄)2

(n + λ0)

this results in the simplification as

= τα0+
n+1
2
−1 exp

{
−
1

2
τ

[
(n + λ0)

(
µ−

nx̄ + λ0µ0
n + λ0

)2
+
nλ0(µ0 − x̄)2

(n + λ0)

]}
×

exp
{
−τ(s2/2 + β0)

}
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and grouping terms for µ, τ ’s distributions we arrive at

= τ1/2 exp

{
−
1

2
(n + λ0)τ

[(
µ−

nx̄ + λ0µ0
n + λ0

)2]}
×

τα0+
n
2
−1 exp

{
−τ
(
s2/2 + β0 +

nλ0(µ0 − x̄)2

2(n + λ0)

)}
∝ ξ1(µ|τ, x1, ..., xn) · ξ2(τ |x1, ..., xn) (Normal− Gamma)

The results above imply that

µ1 =
λ0µ0 + nx̄

λ0 + n
λ1 = λ0 + n

α1 = α0 +
n

2
β1 = β0 +

1

2
s2 +

nλ0(x̄ − µ0)2

2(λ0 + n)

as we sought to show. □

Now that we know that the Normal-Gamma is a conjugate prior, it is also useful (for credible
intervals) to know the distribution of µ itself.

Theorem 6.1.2 (Distn. of µ). If µ|τ ∼ N (µ0, σ2 = [λ0τ ]−1) and τ ∼ Gamma(α0, β0), then
we have (

λ0α0
β0

)1/2
(µ− µ0) ∼ t2α0

Proof. We begin with the random variable Z such that

Z =
µ− µ0
σ

=
√
λ0τ(µ− µ0)

Notice that Z ∼ N (0, 1) but not matter what the value of τ is, we will always have Z ∼
N (0, 1). This makes Z ⊥⊥ τ , that is, if we hold µ as random and τ known, i.e. f1(z |τ) = f (z).
Now we create another random variable Y such that Y = 2β0τ which implies Y ∼ χ22α0. Since
Z ⊥⊥ τ , we have Z ⊥⊥ Y too. This, by the definition of the t-distribution, gives the random
variable U the form

U =
Z√
Y/2α0

=
(λ0τ)

1/2(µ− µ0)
(2β0τ/2α0)

1/2
=

(
λ0α0
β0

)1/2
(µ− µ0) ∼ t2α0

which is what we sought to show.

Note: Accordingly, the marginal posterior of µ, i.e. µ|x1, ..., xn is also t2α1 due to Normal-
Gamma distributions being a conjugate family. □

We can now give some facts about the marginalized distribution of µ.
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Theorem 6.1.3 (Summary Stats of Marginal µ). Suppose that µ, τ ∼ Normal-Gamma with
hyper-parameters µ0, λ0, α0, β0, then if α0 > 1/2

E(µ) = µ0

and if α0 > 1

V (µ) =
β0

λ0(α0 − 1)

Proof. Since
(
λ0α0
β0

)1/2
(µ− µ0) = U, we can also say

µ =

(
β0
λ0α0

)1/2
U + µ0

where we know U ∼ t2α0. Because of this we know from t-distribution facts that

E(U) = 0

V (U) =
α0

α0 − 1

This then makes

E(µ) = E

{(
β0
λ0α0

)1/2
U + µ0

}
= µ0

V (µ) =
β0
λ0α0

V (U) =
β0
λ0α0

·
α0

α0 − 1

=
β0

λ0(α0 − 1)

which are the forms we sought to show.

Note: for the posterior we have the same forms only we set µ0, λ0, α0, β0 to µ1, λ1, α1, β1.
□

6.2 Credible Intervals Based on Posterior Distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can use the posterior distribution to find intervals (called credible intervals) by determin-
ing quantiles for the prior and/or posterior distributions.

Example 6.2.1 (Credible Interval for µ Prior & Post. (pg. 500 in book)). Suppose µ, τ ∼
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Normal-Gamma where

µ0 = 200 ν20 = 3150

α0 = 2 β0 = 6300

λ0 = 2

Then the random variable U follows a t4 distribution since 2α0 = 4. The form of U is then
given by

U =

(
2 · 2
6300

)1/2
(µ− 200) ≈ 0.025(µ− 200)

The 95% prior credible interval is then

P (−2.776 ≤ 0.025(µ− 200) ≤ 2.776) = P (89 ≤ µ ≤ 311) = 0.95

For a posterior interval, we receive the data

x̄ = 182.17 s2 = 88678.5

which implies

µ1 = 183.95 λ1 = 20

α1 = 11 β1 = 50925.37

Now the random variable U|x1, ..., xn follows a t22 distribution since 2α1 = 22. The form of
U|x1, ..., xn is then given by

U|x1, ..., xn =
(
20 · 11
50925.37

)1/2
(µ− 183.95)

The posterior credible interval is then

P (−2.074 ≤ U ≤ 2.074|x1, ..., xn) = P (152.38 ≤ µ ≤ 215.52|x1, ..., xn) = 0.95

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For comparison, the t condfidence interval bounds are

B = x̄ + t17;0.975
σ′√
n

= x̄ + 2.111

√
88678.5

18

= 218.09
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A = x̄ − t17;0.975
σ′√
n

= x̄ − 2.111
√
88678.5

18

= 146.25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ª

6.3 Improper Prior Distributions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We sometimes choose an "improper prior" in the sense that the prior is not a probability
distribution. For example, if we are interested in the mean of a normal distribution µ, we
could choose the prior as ξ(µ) = 1 for −∞ ≤ µ ≤ ∞, but this is improper since∫ ∞

−∞
ξ(µ)dµ

is not defined. So, ξ(µ) is not a "real" prior p.d.f.

Similarly, we can choose an improper prior for σ. Typically this is g(σ) = 1/σ for 0 ≤ σ ≤ ∞
and again the integral ∫ ∞

−∞
g(σ)dσ

is not defined. If we wish to do Bayesian analysis with σ, then we know that since σ = τ−1/2,
the improper p.d.f is

ξ(τ) =
1

2
τ−1 for τ > 0

by the transformation of variables theorem1. If we, since the priors are improper, say µ ⊥⊥ τ ,
the joint improper p.d.f is then

ξ(µ, τ) =
1

2
τ−1

We can now compute the (proper2) posterior distribution from this improper prior as follows

ξ(µ, τ |x1, ..., xn) ∝ ξ(µ, τ)f (x1, ..., xn|µ, τ)

∝ τ−1τn/2 exp
{
−
τ

2
s2 −

nτ

2
(µ− x̄)2

}
=
[
τ1/2 exp

{
−
nτ

2
(µ− x̄)2

}]
︸ ︷︷ ︸

A

×
[
τ
n−1
2
−1 exp

{
−τ

s2

2

}]
︸ ︷︷ ︸

B

1since we want an improper prior for τ it is fair to write ξ(τ) = aτ−1 for any real a too
2by Bayes’ Theorem
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Notice that A is proportional to the distribution N (x̄ , nτ︸︷︷︸
precision

) and B is proportional to the

distribution Gamma(n−1
2
, s
2

2
). This implies that

µ|τ, x1, ..., xn ∼ N (µ1 = x̄ , τ1 = nτ) (λ1 = n)

τ |x1, ..., xn ∼ Gamma
(
α1 =

n − 1
2

, β1 =
s2

2

)

Notice, for a proper Normal-Gamma prior we have

µ1 =
λ0µ0 + nx̄

λ0 + n
λ1 = λ0 + n

α1 = α0 +
n

2
β1 = β0 +

1

2
s2 +

nλ0(x̄ − µ0)2

2(λ0 + n)

and if we set λ0 = 0, α0 = −1/2, and β0 = 0, then we arrive at the posterior hyper-parameters
using the improper prior. Also, if we set µ0 = 0 then we get a prior for µ centered at 0.

Example 6.3.1 (Improper Prior Credible Interval). We begin with the improper joint prior
distribution we just created for our state of mind before collecting the data:

ξ(µ, τ) =
1

2
τ−1 ∝ τ−1

and this is equivalent to choosing the ’improper prior hyper-parameters’ λ0 = 0, α0 =
−1/2 and β0 = 0. Note, however, that this is different than individually choosing the im-
proper priors for µ and τ as we discussed above.3

We know that the posterior µ, τ |x1, ..., xn will be a Normal Gamma as we have already shown.
So, when we collect data and observe

n = 26 x̄ = 5.134 s2 = 63.96

we observe the posterior hyper-parameters as

µ1 = x̄ = 5.134 λ1 = n = 26

α1 =
n − 1
2
= 12.5 β1 =

1

2
s2 =

n∑
i=1

(xi − x̄)2 = 31.98

which in turn allows us to calculate U as

U =

(
λ1α1
β1

)1/2
(µ− µ1)

=

(
26 · 12.5
31.98

)1/2
(µ− 5.134)

= 3.188(µ− 5.134)
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Thus, the 95% credible interval for µ is obtained as follows

P (−2.060 ≤ U ≤ 2.060) = P (−2.060 ≤ 3.188(µ− 5.134) ≤ 2.060)

= P

(
−2.060
3.188

+ 5.134 ≤ µ ≤
2.060

3.188
+ 5.134

)
= P (4.488 ≤ µ ≤ 5.78) = 0.95

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note: The abstract form of U using only the forms for the posterior hyper-parameters is
given by

U =

(
n(n − 1)/2∑n
i=1(xi − x̄)2/2

)1/2
(µ− x̄)

=

(
n(n − 1)∑n
i=1(xi − x̄)2

)1/2
(µ− x̄)

=
( n
σ̂2

)1/2
(µ− x̄) ∼ tn−1

and the credible interval then becomes

x̄ − t∗
σ̂√
n
≤ µ ≤ x̄ + t∗

σ̂√
n

This has the same form as a t confidence interval for the population mean. Note, however,
that the two are different in interpretation: credible intervals reflect our certainty about a
parameter belonging to an interval and confidence intervals reflect our interval’s probabilistic
ability to capture the quantity in question.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ª

3Both methods yield the same results in the end, however. So we are free to pick either.
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Chapter 7 — Unbiased Estimators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter we discuss and give various examples of unbiased statistics, giving some
advantages and disadvantages of these estimators. Before we talk about unbiasedness, we
define what statistical bias is.

Definition 7.0.1 (Statistical Bias). The statistical bias or bias is the difference between
the expected value of the estimator δ(X1, ..., Xn) and the parameter to be estimated g(θ).
In other words,

bias = E [δ(X1, ..., Xn)]− g(θ) = E(δ(X1, ..., Xn)− g(θ))

¨

In a sense, the bias of an estimator tells us how ’off’ or ’non-centered’ that estimator is with
respect to the parameter in question. The estimator is a random variable and will rarely be
g(θ), but when it is centered about g(θ) in distribution we can have ’on average’ a better
estimate (most of the time). When the statistical bias in non-existent, we have what is
known as unbiasedness.

Definition 7.0.2 (Statistical Unbiasedness). An estimator δ(X1, ..., Xn) is unbiased when
bias = 0. That is,

bias = E [δ(X1, ..., Xn)]− g(θ) = 0
=⇒ E [δ(X1, ..., Xn)] = g(θ)

¨

Now that we know about bias, we can find an alternative form for the MSE that we defined
in 3.

Corollary 7.0.1 (MSE Bias-Variance Form). If δ(X1, ..., Xn) is an estimator of g(θ) and has
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finite variance, then

MSE = [bias(δ(X1, ..., Xn))]
2 + V [δ(X1, ..., Xn)]

Proof. We begin with the definition of MSE and work from there:

MSE = E
[
(δ(X1, ..., Xn)− g(θ))2

]
= E

[
δ(X1, ..., Xn)

2 − 2δ(X1, ..., Xn)g(θ) + g(θ)2
]

= E
[
δ(X1, ..., Xn)

2
]
− E [δ(X1, ..., Xn)]2 + E [δ(X1, ..., Xn)]2

− 2g(θ)E [δ(X1, ..., Xn)] + g(θ)2

= V [δ(X1, ..., Xn)] + [E [δ(X1, ..., Xn)]− g(θ)]2

= V [δ(X1, ..., Xn)] + [bias(δ(X1, ..., Xn))]
2

= [bias(δ(X1, ..., Xn))]
2 + V [δ(X1, ..., Xn)]

as we sought to show. □

We now give some examples of unbiased estimators.

Example 7.0.1 (Sample Mean). Suppose X1, ..., Xn
i id∼Pθ and g(θ) = E(Xi) for any 1 ≤ i ≤ n,

then we find that X̄ is an unbiased estimator for g(θ). This is because

E(X̄) = E

(
1

n

n∑
i=1

Xi

)

=
1

n
E

(
n∑
i=1

Xi

)

=
1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

g(θ)

= g(θ)

The MSE then becomes MSE[X̄] = V (X̄) = V (Xi)/n since the bias is 0.

ª

Example 7.0.2 (Comparing Estimators). Suppose X1, X2, X3
i id∼ exp(θ) where Xi =
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lifetimes of electronic components. We know the following from calculation

θ̂MLE =
3

T
=

3∑3
i=1Xi

=
3

X1 +X2 +X3

θ̂unbiased =
2

X1 +X2 +X3

θ̂Bayes =
4

2 +
∑3
i=1Xi

and

V
(
θ̂unbiased

)
=
22

4
θ2 = θ2

V
(
θ̂MLE

)
=
9

4
θ2

which can yield

MSE
(
θ̂unbiased

)
= θ2

MSE
(
θ̂MLE

)
=
9

4
θ2 +

θ2

4
= 2.5θ2

Notice that MSE
(
θ̂unbiased

)
< MSE

(
θ̂MLE

)
, suggesting that the unbiased statistic has a

lower chance of error than the MLE. In practice MSE
(
θ̂Bayes

)
cannot be computed directly

so we use simulation of the sampling distribution of θ̂Bayes to obtain it. We find, however,
that MSE

(
θ̂Bayes

)
< MSE

(
θ̂unbiased

)
. So, in terms of MSE alone a Bayes’ Estimate has

lower error chance and an unbiased estimator is chosen above the MLE.

ª

7.1 Unbiased Estimation of Variance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using the concept on unbiasedness, we can construct an unbiased estimate for any variance
σ2.

Theorem 7.1.1 (Unbiased Estimator for σ2). Suppose X1, ..., Xn
i id∼ Pθ : θ ∈ Ω and g(θ) =

V (Xi) = σ
2 for any 1 ≤ i ≤ n, then

σ̂21 =
1

n − 1

n∑
i=1

(Xi − X̄)2

is unbiased for g(θ).
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Proof. Consider σ20 =
1
n

∑n
i=1(Xi − X̄)2. We know that

n∑
i=1

(Xi − X̄)2 =
n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2

and this allows us to write the form of E (σ20) as

E
(
σ20
)
= E

[
1

n

n∑
i=1

(Xi − X̄)2
]

= E

[
1

n

n∑
i=1

(Xi − µ)2
]
− E

[
(X̄ − µ)2

]
Since E(Xi) = µ and V (Xi) = E ([Xi − E (Xi)]2) = σ2 we have

E
(
[Xi − µ]2

)
= σ2

=⇒ E

[
1

n

n∑
i=1

(Xi − µ)2
]
=
1

n

n∑
i=1

σ2 = σ2

Similarly, E(X̄) = µ and V (X̄) = σ2/n since X1, ..., Xn are i.i.d and this implies

E
[
(X̄ − µ)2

]
= σ2/n

=⇒ E
[
σ20
]
= σ2 − σ2/n =

n − 1
n

σ2

To make an unbiased estimator, then, we multiply σ20 by
(
n − 1
n

)−1
=

(
n

n − 1

)
to yield

σ21 =

(
n

n − 1

)
σ20

as unbiased for σ2. □

Example 7.1.1 (Sampling from Normal Distribution). If X1, ..., Xn
i id∼ N (µ, σ2), then σ̂2MLE

is a biased estimator for σ2. We know this because

σ̂2MLE =
1

n

n∑
i=1

(Xi − X̄)2

= σ̂20 = biased from theorem above

ª

Sometimes, we can have multiple unbiased estimators as the following example illustrates.



7.1. UNBIASED ESTIMATION OF VARIANCE 91

Example 7.1.2 (Sampling from Poisson). Suppose X1, ..., Xn
i id∼ Poisson(θ), then we know

E(Xi) = θ V (Xi) = θ

If we wish to unbiasedly estimate θ we have

θ̂1 = X̄ (unbiased)

θ̂2 = σ̂
2
1 =

1

n − 1(Xi − X̄)
2 (unbiased)

and further for any α such that −∞ ≤ α ≤ ∞ the estimator

θ̂α = αX̄ + (1− α)σ̂21

is unbiased as

E
(
θ̂α
)
= E

[
αX̄ + (1− α)σ̂21

]
= αθ + (1− α)θ = θ

Hence, there can be many unbiased estimates; they are not unique.

ª

Remark 7.1.1. Given that we have several choices/options for estimators that are unbiased,
which one do we choose?

−→ Typically, we choose the estimator with the smallest variance.

♦

Example 7.1.3 (Minimum MSE σ̂2). Suppose X1, ..., Xn
i id∼N (µ, σ2) and consider estimating

σ2. We know

σ̂20 = σ̂
2
MLE =

1

n
(Xi − X̄)2 (biased)

σ̂21 =
1

n − 1(Xi − X̄)
2 (unbiased)

Does σ̂21 have a smaller MSE among all estimators? We can begin to get an answer if we
look at the general case

Tc = c

n∑
i=1

(Xi − X̄)2 (c > 0)

Recall that
∑n
i=1(Xi − X̄)2 ∼ σ2χ2n−1 which implies that c

∑n
i=1(Xi − X̄)2 ∼ cσ2χ2n−1. This
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makes its summary statistics as

E (Tc) = cσ
2(n − 1)

V (Tc) = c
2σ42(n − 1)

by properties of the χ2 distribution. The MSE for Tc then becomes

MSE(Tc) = bias(Tc)2 + V (Tc)

=
(
E [Tc ]− σ2

)2
+ V (Tc)

=
(
cσ2(n − 1)− σ2

)2
+ c2σ42(n − 1)

= σ4
[
(c(n − 1)− 1)2 + 2c2(n − 1)

]
and is minimized by choosing n = 1/n + 1.

Therefore, the estimator of the variance with the lowest MSE is

T1/n+1 =
1

n + 1
(Xi − X̄)2

and this is true for all σ2. Our results show that T1/n and T1/n−1 are both inadmissible because
they are dominated, with respect to squared error loss, by T1/n+1. In addition, C. Stein (1964)
further showed that T1/n+1 is also inadmissible.

ª

7.2 Issues with Unbiasedness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

While unbiasedness can help as a deciding factor for choosing estimates, it has limitations.
For instance, unbiased estimators do not always exist for every statistical situation and they
can sometimes lead to ’silly’ estimators that do not make intuitive sense.

Example 7.2.1 (Geometric Distribution). Suppose p = chance of success, X =

#of failures before a success and all trials are independent of each other, then X ∼ Geo(p)
and the mass function is

P (X = x) = p(1− p)x (x = 0, 1, 2, ...)

An unbiased estimator p̂ of p is one such that E(p̂) = p. One quick way to obtain p̂ is to
simply set p̂ to 1 when x = 0 and 0 otherwise giving

p̂ =

{
1 x = 0

0 x > 0
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As verification,

E(p̂) =

∞∑
x=0

p̂(x) · p(1− p)x = p + 0 = p

It can be shown that this is the only unbiased estimator. But there is something off about it.
If we observe a success without any failures, then we think that a success will always happen,
i.e. p = 1. Also, just observing a single failure before one success leads us to believe there is
no chance of a success, i.e. p = 0 when we just had one success. This is counterintuitive.

ª

Example 7.2.2 (Poisson Distribution). Suppose X ∼ Poisson(λ) and we want to estimate
e−2λ where λ > 0. We know

P (X = x) = e−λ
λx

x!

and by examining e−2λ’s Taylor series we can come up with the unbiased estimator

ê−2λ =

{
1 x even

−1 x odd
= (−1)x

As verification, we note the Taylor series for e−2λ is

e−2λ = e−λe−λ =

[
∞∑
x=0

(−λ)x

x!

]
· e−λ

=

∞∑
x=0

(−1)x(λ)xe−λ

x !

and the expectation of ê−2λ is

E
(
ê−λ
)
=

∞∑
x=0

(−1)x · e−λ
λx

x!

=

∞∑
x=0

(−1)xλxe−λ

x!

Since both forms match, we have E
(
ê−λ
)
= e−2λ which fits the definition of an unbiased

estimator.

ª
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Chapter 8 — Fisher Information
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Fisher Information I(θ) of a parameter θ measures how helpful an observation or set
of observations are in determining (estimating) the true value of θ. The higher I(θ) is, the
more the data gives us an idea of what θ could be. The lower I(θ) is, the less the data gives
us an idea of what θ could be and we would need many more samples to correctly (within
probability) estimate θ. To define the Fisher Information of a data point or a sample, we first
examine the likelihood curve f (x |θ). To make the math easier, we take the logarithm of this
curve and set it as λ(x |θ) = log f (x |θ). When this curve has high curvature (or high peaks),
the data is helpful in estimating θ—low curvature means the opposite.

Intuitively, then, this would mean that the Fisher Information is related to dλ(x |θ)
dθ

in that
higher values of it mean more information. Since −∞ < λ′(x |θ) <∞, we can square it and
marginalize out the data (by expectation) to obtain some form of information the data point
has on θ. Hence, we can set I(θ) = E

[
(λ′(x |θ))2 |θ

]
. This is an intuitive explanation of the

concept of ’Fisher Information’. We now formalize this idea below.

8.1 Fisher Information for a Single Random Variable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can define Fisher Information as follows.

Definition 8.1.1 (Fisher Information for one r.v.). Suppose X ∼ Pθ : θ ∈ Ω and its p.d.f (or
p.m.f.) is f (x |θ) > 0 for all x ∈ S, θ ∈ Ω for θ unknown. We further assume Ω ⊂ (a, b) ⊂ R
where (a, b) is an open interval on the real line R. We then define

λ(x |θ) = log[f (x |θ)]

and assume f is twice differentiable in θ. This means that

λ′(x |θ) =
∂λ(x |θ)
∂θ

(exists)

λ′′(x |θ) =
∂2λ(x |θ)
∂θ2

(exists)
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We then define the Fisher Information as

I(θ) = E
{
[λ′(x |θ)]2

∣∣∣∣θ}
in other words,

I(θ) =
∫
x∈S
[λ′(x |θ)]2 f (x |θ)dx

¨

In practice, the above integral can be complex to calculate, so we have the following theorem.

Theorem 8.1.1 (Fisher Information Variance Form). If we assume we can calculate

∂2

∂θ2

∫
x∈S

λ(x |θ)dx =
∫
x∈S

∂2λ(x |θ)
∂θ2

dx

=

∫
x∈S

λ′′(x |θ)dx

and the integrals exist, then

I(θ) = −E [λ′′(x |θ)|θ] = V [λ′(x |θ)|θ]

Proof. We will first show E [λ′(x |θ)|θ] = 0. We work from definition and note here that

λ′(x |θ) =
f ′(x |θ)
f (x |θ)

and differentiation under the integral sign is allowed. We can then have

E [λ′(x |θ)|θ] =
∫
x∈S

f ′(x |θ)
f (x |θ) f (x |θ)dx

=

∫
x∈S

f ′(x |θ)dx

=
∂

∂θ

∫
x∈S

f (x |θ)dx

=
∂

∂θ
1 = 0

We can now state λ′(x |θ) = λ′(x |θ) − E [λ′(x |θ)|θ] and the definition of Fisher Information
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can be seen as

I(θ) = E
{
[λ′(x |θ)]2

∣∣∣∣θ}
= E

{
(λ′(x |θ)− E [λ′(x |θ)|θ])2

∣∣∣∣θ}
= V [λ′(x |θ)|θ] (def. of variance)

For the next equality, we compute the form of λ′′(x |θ) as follows

λ′′(x |θ) =
f (x |θ)f ′′(x |θ)− [f ′(x |θ)]2

[f (x |θ)]2
(quotient rule)

=
f ′′(x |θ)
f (x |θ) − λ

′(x |θ)2

By this fact, we can see if we take expectations assuming some value of θ

E[λ′′(x |θ)|θ] = E
[
f ′′(x |θ)
f (x |θ)

∣∣∣∣θ]− E [λ′(x |θ)2∣∣θ]
=

∫
x∈S

f ′′(x |θ)
f (x |θ) f (x |θ)dx − I(θ)

=

∫
x∈S

f ′′(x |θ)dx − I(θ)

=
∂2

∂θ2
1− I(θ)

= −I(θ)

which implies
I(θ) = −E[λ′′(x |θ)|θ]

too. This leaves I(θ) = −E [λ′′(x |θ)|θ] = V [λ′(x |θ)|θ] as we sought to show. □

Example 8.1.1 (Bernoulli I(θ)). Suppose X ∼ Bernoulli(p), then f (x |θ) = px(1 − p)1−x
which implies that

λ(x |p) = x log(p) + (1− x) log(1− p)

=⇒ λ′(x |p) =
x

p
−
1− x
1− p

=⇒ λ′′(x |p) = −
x

p2
−
1− x
(1− p)2 = −

(
x

p2
+
1− x
(1− p)2

)
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This then makes the Fisher Information as

I(p) = −E
{
λ′′(x |p)

∣∣∣∣p} = E [ xp2 + 1− x
(1− p)2

]
=
1

p
+
1

1− p =
1

p(1− p)

ª

8.1.1 Multiple Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we have multiple parameters θ = (θ1, ..., θn) then we develop what is known as a Fisher
Information Matrix IIIθ. For the two parameter case θ = (θ1, θ2), this matrix looks like

IIIθ = −E




∂2

∂θ21
λ(x |θ)

∂2

∂θ1∂θ2
λ(x |θ)

∂2

∂θ1∂θ2
λ(x |θ)

∂2

∂θ22
λ(x |θ)




and is a measure of how well the observation X can help us estimate θ1, θ2, and θ1, θ2 jointly.
More generally, the Fisher Information Matrix for θ = (θ1, ..., θn) can be given by

IIIθ = E
[
∇θλ(x |θ)∇θλ(x |θ)

′]

= E




∂

∂θ1
λ(x |θ)
...

∂

∂θn
λ(x |θ)


(
∂

∂θ1
λ(x |θ) . . .

∂

∂θn
λ(x |θ)

)
(∗)
=

 I(θ1) . . . I(θ1, θn)
... . . . ...

I(θn, θ1) . . . I(θn)


where the prime denotes vector transpose. The equality (∗) can be derived via the method
[2] gave:

Theorem 8.1.2 (Fisher Information Hessian Form). The Fisher-Information Matrix can be
written as

IIIθ =

 I(θ1) . . . I(θ1, θn)
... . . . ...

I(θn, θ1) . . . I(θn)
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where

I(θi , θj) = −E
[

∂2

∂θi∂θj
λ(x |θ)

]
i , j ∈ {1, ..., n}

in this case. Note that I(θi , θi) = I(θi) by definition.

Proof. We define Di = ∂
∂θi

and Di ,j = ∂2

∂θi∂θj
. With this we find out the form of any entry in

IIIθ or Di ,jλ(x |θ):

Di ,jλ(x |θ) = Di [Djλ(x |θ)] = Di
[
Dj f (x |θ)
f (x |θ)

]
=
Di ,j f (x |θ)
f (x |θ) −

Di f (x |θ)
f (x |θ)

Dj f (x |θ)
f (x |θ) (quotient rule)

(∗)
=
Di ,j f (x |θ)
f (x |θ) −

∂

∂θi
λ(x |θ)

∂

∂θj
λ(x |θ)

If we allow differentiation under the integral sign, then we can compute the expectation of
Di ,j f (x |θ)
f (x |θ) as

E

[
Di ,j f (x |θ)
f (x |θ)

]
=

∫
x∈S

Di ,j f (x |θ)
f (x |θ) f (x |θ)dx

=

∫
x∈S

Di ,j f (x |θ)dx

= Di ,j

∫
x∈S

f (x |θ)dx

= Di ,j1 = 0

With this, we are ready to compute the expectation of the equation (∗):

E [Di ,jλ(x |θ)] = E
[
Di ,j f (x |θ)
f (x |θ)

]
− E

[
∂

∂θi
λ(x |θ)

∂

∂θj
λ(x |θ)

]
= −E

[
∂

∂θi
λ(x |θ)

∂

∂θj
λ(x |θ)

]
= −I(θi , θj)

=⇒ I(θi , θj) = −E [Di ,jλ(x |θ)] = −E
[

∂2

∂θi∂θj
λ(x |θ)

]
as we sought to show. □

With our understanding of Fisher Information for a single random variable X, we can write
the steps to finding such information:

Steps to Finding I(θ)

Step 1 Find the p.d.f or p.m.f. of X, f (x |θ)
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Step 2 Take its logarithm to get λ(x |θ) = log [f (x |θ)]

Step 3 Take the second derivative of λ(x |θ) to get λ′′(x |θ). For the two variable case,

compute the mixed derivative
∂2

∂θ1∂θ2
λ(x |θ).

Step 4 Find the expectation of this quantity with respect to X: E
[
λ′′(x |θ)

∣∣θ]
Step 5 Flip the sign of this expectation, this is the Fisher Information I(θ) = −E

[
λ′′(x |θ)

∣∣θ]
K

Example 8.1.2 (Normal Distribution IIIθ). Suppose X ∼ N (µ, σ2). We split our analysis into
3 cases.

Case 1: µ unknown

• In this case we know that

f (x |µ) =
1√
2πσ2

exp

{
−
1

2σ2
(x − µ)2

}
which implies

λ(x |µ) = −
1

2
log
(
2πσ2

)
−
(x − µ)2

2σ2

=⇒ λ′(x |µ) =
x − µ
σ2

=⇒ λ′′(x |µ) = −
1

σ2
(a constant)

=⇒ I(µ) =
1

σ2

Case 2: σ2 unknown

• In this case we compute λ′′(x |σ) with respect to σ:

λ′(x |σ2) =
∂

∂σ

{
−
1

2
log
(
2πσ2

)
−
(x − µ)2

2σ2

}
= −
1

σ
+
(x − µ)2

σ3

Which then leads to

λ′′(x |σ2) =
1

σ2
−
3

σ4
(x − µ)2
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This allows us to compute the Fisher Information as

I(σ2) = −E
[
λ′′(x |σ2)|σ2

]
= −

1

σ2
+
3

σ2
E

[(
x − µ
σ

)2]
= −

1

σ2
+
3

σ2
=
2

σ2

Case 3: both µ and σ2 unknown

• In this case we create the Fisher Information Matrix. We evaluate
∂2

∂σ2
λ(x |µ, σ2)

and
∂2

∂µ2
λ(x |µ, σ2) which have the same forms as in the cases 1 and 2. In addition,

we have to evaluate the mixed derivative
∂2

∂µ∂σ
λ(x |µ, σ). We proceed as follows

∂2

∂µ∂σ
λ(x |µ, σ) =

∂

∂µ

[
∂

∂σ
λ(x |µ, σ)

]
=

∂

∂µ

[
−
1

σ
+
(x − µ)2

σ3

]
=
−2(x − µ)

σ3

This gives us the joint Fisher Information as

I(µ, σ) = E
[
∂2

∂µ∂σ
λ(x |µ, σ)

∣∣∣∣µ, σ] = E [−2(x − µ)σ3

∣∣∣∣µ, σ] = 0
The Fisher Information Matrix becomes

IIIµ,σ =
(
1/σ2 0

0 2/σ2

)

ª

8.2 Fisher Information for a Random Sample
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now that we know how to compute the Fisher Information for a single sample, we can
discuss how we would (in most practical applications) use it for a random sample X1, ..., Xn.
Since each sample provides I(θ) amount of information, it would make sense that n of those
samples contains the sum of all the information given or nI(θ). We formalize the concept
below.
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Definition 8.2.1 (Fisher Information for aX1, ..., Xn). Suppose X1, ..., Xn
i id∼Pθ : θ ∈ Ω, f (xi |θ)

is the p.d.f or p.m.f. for each variate, and θ ∈ (a, b)︸ ︷︷ ︸
open interval

⊂ Ω. We define λ(x1, ..., xn|θ) as

λ(x1, ..., xn|θ) = log [f (x1, ..., xn)]

The Fisher Information for X1, ..., Xn is then defined as

In(θ) = E
{
[λ′n(x1, ..., xn|θ)]

2

∣∣∣∣θ}
=

∫
X∈S
[λ′n(x1, ..., xn|θ)]

2
f (x1, ..., xn|θ)dX

where X = (X1, ..., Xn) and S = S × · · · × S. As before we can show

In(θ) = V
[
λ′n(x1, ..., xn|θ)

∣∣∣∣θ]
= −E

[
λ′′n(x1, ..., xn|θ)

∣∣∣∣∣θ
]

¨

Theorem 8.2.1 (Fisher Information for X1, ..., Xn Simplification). If I(θ) = −E

[
λ′′n(x |θ)

∣∣∣∣∣θ
]

is the Fisher Information for a single random variable X and set of parameters θ = (θ1, ..., θn),
then for a random sample X1, ..., Xn from this population we have

In(θ) = nI(θ)

Proof. We begin with the likelihood function f (x1, ..., xn|θ) and create a new form for it

f (x1, ..., xn|θ) =
n∏
i=1

f (xi |θ)
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This implies

λn(x1, ..., xn|θ) = log

[
n∏
i=1

f (xi |θ)

]

=

n∑
i=1

log [f (xi |θ)]

=

n∑
i=1

λ(xi |θ)

This can be used to give new forms for λ′n and λ′′n

λ′n(x1, ..., xn|θ) =
n∑
i=1

λ′(xi |θ)

λ′′n(x1, ..., xn|θ) =
n∑
i=1

λ′′(xi |θ)

We can now compute the Fisher Information

In(θ) = −E
[
λ′′n(x1, ..., xn|θ)

∣∣∣∣θ]
= −E

[
n∑
i=1

λ′′(xi |θ)

]

=

n∑
i=1

−E [λ′′(xi |θ)]

= nI(θ)

as we sought to show. Note that this works for mixed derivatives as well. □

Corollary 8.2.1 (Fisher Information Matrix for X1, ..., Xn). If we take a random sample
X1, ..., Xn with multiple parameters θ = (θ1, ..., θn), then the Fisher Information Matrix IIIθ,n
is given by IIIθ,n = nIIIθ.

Proof. Since In(θ) = nI(θ) and In(θi , θj) = nI(θi , θj), we have

IIIθ,n =

 nI(θ1) . . . nI(θ1, θn)
... . . . ...

nI(θn, θ1) . . . nI(θn)


= nIIIθ

as we sought to show. More samples, give us a directly proportional amount of information.
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□

Example 8.2.1 (Customer Arrivals). Suppose we own a store and wish to study the rate at
which people come in. We have two sampling plans

• Sampling Plan 1: fix n = # of customers and note the time it took to observe that
many of them or X = time until first n customers. If we assume a rate of θ customers
arriving in a fixed unit of time and Wi ∼ exp(θ) inter-arrival times, we have

X =

n∑
i=1

Wi ∼ Gamma(n, θ)

• Sampling Plan 2: fix a time t and observe Y = # of customers arriving at time t.
Then we have

Y ∼ Poisson(θt)

where θ is the arrival rate (same one as with plan 1).

We can, with some calculation, prove that the Fisher Information for X and Y are

IX(θ) =
n

θ2
IY (θ) =

t

θ

We can see from the above information that IX(θ) = IY (θ) only when n = t · θ. This means
we have the same information only when the number of customers we wait for in plan 1 is
equivalent to the amount of time we fixed in plan 2 multiplied by the rate θ that is the same
for both plans. That is, the number of customers we wait for is the average amount that
would come if we fix some time t.

ª

8.3 Cramér-Rao Lower Bound (Information Inequality)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using the idea of Fisher Information, we can prove the minimum value a variance can have
from some estimator T = r(X1, ..., Xn). This is known as the Cramér-Rao Lower Bound
or Information Inequality.

Theorem 8.3.1 (Cramér-Rao Lower Bound (one parameter)). Suppose X1, ..., Xn
i id∼ Pθ : θ ∈

Ω where θ ∈ (a, b) ⊂ Ω ⊂ R. We then define a statistic T = r(X1, ..., Xn) with finite
variance and set

m(θ) = E(T ) (m(θ) differentiable in θ)
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then,

V (T ) ≥
[m′(θ)]2

nI(θ)

Proof. We know

λ′n(x1, ..., xn|θ) =
f ′(x1, ..., xn|θ)
f (x1, ..., xn|θ)

This makes its average as

E [λ′n(x1, ..., xn|θ)] =
∫
S
f ′(x1, ..., xn|θ)dX

= 0

Since Cov(X, Y ) = E(XY )− E(X)E(Y ), we can state Cov [λ′n(x1, ..., xn|θ), T ] as

Cov [λ′n(x1, ..., xn|θ), T ] = E(Tλ′n(x1, ..., xn|θ))− E(T )E(λ′n(x1, ..., xn|θ))︸ ︷︷ ︸
0

= E(Tλ′n(x1, ..., xn|θ))

From here we expand E(Tλ′n(x1, ..., xn|θ)) to find another form for it

E(Tλ′n(x1, ..., xn|θ)) =
∫
S
tλ′n(x1, ..., xn|θ)f (x1, ..., xn|θ)dX

=

∫
S
tf ′(x1, ..., xn|θ)dX

=

∫
S
r(x1, ..., xn)f

′(x1, ..., xn|θ)dX

If we allow differentiation under the integral sign, then we have

E(Tλ′n(x1, ..., xn|θ)) =
∂

∂θ

∫
S
r(x1, ..., xn)f (x1, ..., xn|θ)dX

=
∂

∂θ
E(T ) = m′(θ)

Hence, m′(θ) = Cov [λ′n(x1, ..., xn|θ), T ]. If we note the Cauchy-Schwartz inequality,

|Cov(X, Y )|2 ≤ V (X)V (Y )

we can see that

Cov [λ′n(x1, ..., xn|θ), T ]
2 ≤ V (λ′n(x1, ..., xn|θ)) · V (T )
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but, m′(θ) = Cov [λ′n(x1, ..., xn|θ), T ] so this is equivalent to

[m′(θ)]
2 ≤ V (λ′n(x1, ..., xn|θ))︸ ︷︷ ︸

In(θ)

·V (T )

=⇒ V (T ) ≥
[m′(θ)]2

In(θ)
=
[m′(θ)]2

nI(θ)

as we sought to show. □

We arrive at a nice fact for the variance of unbiased estimators

Corollary 8.3.1 (Unbiased Estimators C-R Lower Bound). If T = r(X1, ..., Xn) is unbiased
for θ, then

V (T ) ≥
1

nI(θ)

Proof. Since T is unbiased, we have E(T ) = m(θ) = θ which implies that m′(θ) = 1. Using
the C-R bound we just proved we see

V (T ) ≥
1

nI(θ)

as we sought to show. □

Example 8.3.1 (Exponential Distribution). Suppose X1, ..., Xn
i id∼ exp(β), then we know

f (xi) = βe−βxi for xi , β > 0. We wish to estimate β with T = (n − 1)/
∑
Xi and see

how much it varies. For the denominator in T we know
∑
Xi ∼ Gamma(n, β) and this lets

us see the average and variance for T as

E(T ) = (n − 1)E
[
1∑
Xi

]
= ���n − 1

β

���n − 1 = β

V (T ) = (n − 1)2V
[
1∑
Xi

]
= �����(n − 1)2

β2

�����(n − 1)2 (n − 2) =
β2

n − 2

This shows T is unbiased for β as well as its variance as β2/(n− 2). Let’s see if it meets the
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Cramér-Rao lower bound. First, we compute the Fisher Information for this sample

λ(x |β) = logβ − βx

=⇒ λ′(x |β) =
1

β
− x

=⇒ λ′′(x |β) = −
1

β2

=⇒ I(β) = −E
[
λ′′(x |β)

∣∣β] = 1
β2

=⇒ In(β) =
n

β2

Since, T is unbiased, we have m′(β) = 1 and the C-R inequality is

V (T ) ≥
1

nI(θ) =
β2

n

and indeed V (T ) = β2/(n − 2) ≥ β2/n, but notice V (T ) ≠ β2/n and is higher than the
lowest possible variance we can have for an estimator (the lower bound).

If we estimate β with T ∗ = X̄ ∼ Gamma(n, β)/n, then we find

E(T ∗) = m(β) =
1

β

V (T ∗) =
1

nβ2

Let’s see what the C-R lower bound is. We know m′(β) = −1/β2 and this makes the
inequality

V (T ∗) ≥
[m′(β)]2

In(β)
=
[−1/β2]2

n/β2

=
1

nβ2

But, V (T ∗) = 1/(nβ2), so T ∗ = X̄ achieves the C-R lower bound and is the best estimator
(in terms of variance) amongst all that have m(β) = 1/β.

ª

8.4 Efficient Estimators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When an estimator achieves its C-R lower bound, it is said to be efficient. More precisely, we
define it as follows.
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Definition 8.4.1 (Efficient Estimator). T is an efficient estimator of m(θ) when

V (T ) =
[m′(θ)]2

In(θ)
∀θ ∈ Ω

¨

In the following discussion, we assume X1, ..., Xn
i id∼ Pθ : θ ∈ Ω and f (x |θ) satisfies the

conditions for the Information Inequality.

Theorem 8.4.1 (Efficient Estimator Distribution). Under the conditions given above and
assuming |m′(θ)| > 0, we have√

In(θ)
m′(θ)

(T −m(θ)) ∼ N (0, 1)

as n →∞.

Proof. We note that λ′n(x1, ..., xn|θ) =
∑n
i=1 λ

′(x1, ..., xn|θ) and by the Lindeberg and Lévy
central limit theorem, we can conclude

λ′n(x1, ..., xn|θ)√
In(θ)

∼ N (0, 1) n →∞

We also know

E(T ) = m(θ)

V (T ) =
[m′(θ)]2

In(θ)
(T is efficient)

and since V (λ′n(x1, ..., xn|θ)) = In(θ) as well as V (T ) = ρ(In(θ)) for some function ρ, we
must have T = ϵ(λ′n(x1, ..., xn|θ)) for ϵ as

ϵ(u(θ), v(θ)) = u(θ)λ′n(x1, ..., xn|θ) + v(θ)

For our purposes, we set

v(θ) = E(T )

u(θ) =
m′(θ)

In(θ)

This makes T as

T =
m′(θ)

In(θ)
λ′n(x1, ..., xn|θ) + E(T )



8.5. CRAMÉR-RAO FOR MULTIPLE PARAMETERS 108

which implies

T − E(T )
m′(θ)

=
λn(x1, ..., xn|θ)
In(θ)

=⇒
√
In(θ)
m′(θ)

(T −m(θ)) =
λn(x1, ..., xn|θ)√

In(θ)
(E(T ) = m(θ))

Which leads to √
In(θ)
m′(θ)

(T −m(θ)) ∼ N (0, 1)

as we sought to show. □

Corollary 8.4.1 (Efficient MLE’s). For efficient MLE’s θ̂n = θ̂MLE, we have as the immediate
consequence √

In(θ)(θ̂MLE − θ) ∼ N (0, 1)

Proof. Since we are talking about MLE’s, m(θ) = θ and m′(θ) = 1. We then substitute
these values for the ones in the above theorem. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Side-Note: Even if the MLE is not efficient, we can prove that if it is determined by solving

λ′n(x1, ..., xn|θ) = 0

λ′′(x1, ..., xn|θ), λ′′′(x1, ..., xn|θ) exist and certain regulatory conditions are satisfied, then√
In(θ)(θ̂MLE − θ) ∼ N (0, 1) n →∞

such an MLE’s are known as asymptotically efficient.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From a Bayesian Perspective, we can show that if θ̂n is the MLE and θ has a prior defined on
it, that under large samples, the posterior has the following distribution

(θ|X1, ..., Xn) ∼ N
(
θ̂n, 1/In(θ̂n)

)
such a result is sometimes known as the ’Bayesian Central Limit Theorem’.

8.5 Cramér-Rao for Multiple Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now expand on the information inequality for θ = (θ1, ..., θn).
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Theorem 8.5.1 (Cramér-Rao (Multi-Parameter)). If X1, ..., Xn
i id∼ Pθ : θ ∈ Ω where θ =

(θ1, ..., θn) ∈ (a, b)n ⊂ Ω ⊂ Rn and we then define a statistic T = r(X1, ..., Xn) with finite
variance and set E(T ) = m(θ) that is differentiable, then we have

V (T ) ≥ [∇θm(θ)]
′III−1n,θ[∇θm(θ)] =

=

(
∂

∂θ1
λ(x |θ) . . .

∂

∂θn
λ(x |θ)

)
III−1n,θ


∂

∂θ1
λ(x |θ)
...

∂

∂θn
λ(x |θ)


Proof. Beyond scope of course. However, it can be completed if one knows some linear
algebra. If you are interested, please see [1] for a more in-depth analysis. □
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