Lecture # 3 Orthogonal Matrices and Matrix Norms

We repeat the definition an orthogonal set and orthornormal set.

Definition 1 A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$, where each $\mathbf{u}_i \in \mathbf{R}^n$, is said to be an orthogonal with respect to the inner product (\cdot, \cdot) if $(\mathbf{u}_i, \mathbf{u}_j) = 0$ for $i \neq j$. The set is said to be orthonormal if it is orthogonal and $(\mathbf{u}_i, \mathbf{u}_i) = 1$ for $i = 1, 2, \dots, k$

The definition of an orthogonal matrix is related to the definition for vectors, but with a subtle difference.

Definition 2 The matrix $U = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k) \in \mathbf{R}^{n \times k}$ whose columns form an orthonormal set is said to be left orthogonal. If k = n, that is, U is square, then U is said to be an orthogonal matrix.

Note that the columns of (left) orthogonal matrices are orthonormal, not merely orthogonal. Square complex matrices whose columns form an orthonormal set are called *unitary*.

Example 1 Here are some common 2×2 orthogonal matrices

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$U = \sqrt{0.5} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{pmatrix}$$

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Let $\mathbf{x} \in \mathbf{R}^n$ then

$$||U\mathbf{x}||_2^2 = (U\mathbf{x})^T (U\mathbf{x})$$

$$= \mathbf{x}^T U^T U\mathbf{x}$$

$$= \mathbf{x}^T \mathbf{x}$$

$$= ||\mathbf{x}||_2^2$$

$$||U\mathbf{x}||_2 = ||\mathbf{x}||_2.$$

This property is called orthogonal invariance, it is an important and useful property of the two norm and orthogonal transformations. That is, orthogonal transformations DO NOT AFFECT the two-norm, there is no comparable property for the one-norm or ∞ -norm.

The *Cauchy-Schwarz* inequality given below is quite useful for all inner products.

Lemma 1 (Cauchy-Schwarz inequality) Let (\cdot, \cdot) be an inner product in \mathbb{R}^n . Then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$|(\mathbf{x}, \mathbf{y})| \le (\mathbf{x}, \mathbf{x})^{1/2} (\mathbf{y}, \mathbf{y})^{1/2}. \tag{1}$$

Moreover, equality in (1) holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbf{R}$.

In the Euclidean inner product, this is written

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

This inequality leads to the following definition of the angle between two vectors relative to an inner product.

Definition 3 The angle θ between the two nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ with respect to an inner product (\cdot, \cdot) is given by

$$\cos \theta = \frac{(\mathbf{x}, \mathbf{y})}{(\mathbf{x}, \mathbf{x})^{1/2} (\mathbf{y}, \mathbf{y})^{1/2}}.$$
 (2)

With respect to the Euclidean inner product, this reads

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

The one-norm and the ∞ -norm share two inequalities similar to the Cauchy–Schwarz inequality.

$$\begin{aligned} &|\mathbf{x}^T\mathbf{y}| &\leq & \|\mathbf{x}\|_1 \|\mathbf{y}\|_{\infty}, \\ &|\mathbf{x}^T\mathbf{y}| &\leq & \|\mathbf{x}\|_{\infty} \|\mathbf{y}\|_1, \end{aligned}$$

but these do not lead to any reasonable definition of angle between vectors.

Example 2

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}.$$

We have

$$\|\mathbf{x}\|_2 = \sqrt{2}, \quad \|\mathbf{y}\|_2 = \sqrt{10}, \quad \mathbf{x}^T \mathbf{y} = 2$$

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} = \sqrt{1/5}.$$

Thus

$$\theta = 1.1071^R = 63.43^{\circ}$$

is the angle between the two vectors. The three upper bounds on the dot product are

$$\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} = \sqrt{20},$$

 $\|\mathbf{x}\|_{1}\|\mathbf{y}\|_{\infty} = 2 \cdot 3 = 6$
 $\|\mathbf{x}\|_{\infty}\|\mathbf{y}\|_{1} = 1 \cdot 4 = 4.$

It is possible to come up with examples where each of these three is the smallest bound (or the largest one).

Matrix Norms

We will also need norms for matrices.

Definition 4 A norm in $\mathbb{R}^{m \times n}$ is a function $\|\cdot\|$ mapping $\mathbb{R}^{m \times n}$ into \mathbb{R} satisfying the following three axioms

- 1. $||X|| \ge 0$; ||X|| = 0 if and only if X = 0, $X \in \mathbf{R}^{m \times n}$
- 2. $\|\alpha X\| = |\alpha| \|X\|$ $X \in \mathbf{R}^{m \times n}, \alpha \in \mathbf{R}$
- 3. $||X + Y|| \le ||X|| + ||Y|| \quad X, Y \in \mathbf{R}^{m \times n}$.

This definition is isomorphic to the definition of a vector norm on \mathbf{R}^{mn} . For example, the Frobenius norm defined by

$$||X||_F = \left(\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2\right)^{1/2} \tag{3}$$

is isomorphic to the two-norm on \mathbf{R}^{mn} .

Since X represents a linear operator from \mathbf{R}^n to \mathbf{R}^m , it is appropriate to define the *induced norm* $\|\cdot\|_{\alpha}$ on $\mathbf{R}^{m\times n}$ by

$$||X||_{\alpha} = \sup_{\mathbf{y} \neq 0} \frac{||X\mathbf{y}||_{\alpha}}{||\mathbf{y}||_{\alpha}}.$$
 (4)

It is a simple matter to show that

$$||X||_{\alpha} = \max_{\|\mathbf{y}\|_{\alpha}=1} ||X\mathbf{y}||_{\alpha}. \tag{5}$$

Note that the maximum is taken over a closed, bounded set, thus we have that

$$||X||_{\alpha} = ||X\mathbf{y}^*||_{\alpha} \tag{6}$$

for some \mathbf{y}^* such that $\|\mathbf{y}^*\|_{\alpha} = 1$. The above definition leads to the very useful bound

$$||X\mathbf{y}||_{\alpha} \le ||X||_{\alpha} ||\mathbf{y}||_{\alpha} \tag{7}$$

where equality occurs for every vector of the form $\gamma \mathbf{y}^*, \gamma \in \mathbf{R}$.

For any induced norm $\|\cdot\|$, the identity matrix I_n for $\mathbf{R}^{n\times n}$ satisfies

$$||I_n|| = 1. (8)$$

However, for the Frobenius norm

$$||I_n||_F = \sqrt{n},$$

thus it is not an induced norm for any vector norm.

For the one-norm and the ∞ -norm there are formulas for the corresponding matrix norms and for a vector \mathbf{y}^* satisfying (6). The one-norm formula is

$$||X||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |x_{ij}|. \tag{9}$$

If j_{max} is the index of a column such that

$$||X||_1 = \sum_{i=1}^m |x_{i,j_{max}}|$$

then $\mathbf{y}^* = \mathbf{e}_{j_{max}}$, the corresponding column of the identity matrix.

The ∞ -norm formula is

$$||X||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |x_{ij}|.$$
 (10)

If i_{max} is the index of a row such that

$$||X||_{\infty} = \sum_{j=1}^{n} |x_{i_{max},j}|$$

then the vector $\mathbf{y}^* = (y_1^*, \dots, y_n^*)^T$ with components

$$y_j^* = \operatorname{sign}(x_{i_{max},j})$$

satisfies (6). Note that $||X||_{\infty} = ||X^T||_1$.

The matrix two-norm does not have a formula like (9) or (10) and all other formulations are really equivalent to (4). Moreover, computing the vector \mathbf{y}^* in (6) is a nontrivial task that we will discuss later.

The induced norms have a convenient property that is important in understanding matrix computations. For $X \in \mathbf{R}^{m \times n}$ and $Y \in \mathbf{R}^{n \times s}$ consider $||XY||_{\alpha}$. We have that

$$||XY||_{\alpha} = \max_{\|\mathbf{z}\|_{\alpha}=1} ||XY\mathbf{z}||_{\alpha} \le \max_{\|\mathbf{z}\|_{\alpha}=1} ||X||_{\alpha} ||Y\mathbf{z}||_{\alpha}$$
$$= ||X||_{\alpha} \max_{\|\mathbf{z}\|_{\alpha}=1} ||Y\mathbf{z}||_{\alpha} = ||X||_{\alpha} ||Y||_{\alpha}.$$

Thus

$$||XY||_{\alpha} \le ||X||_{\alpha} ||Y||_{\alpha}.$$
 (11)

A norm $\|\cdot\|_{\alpha}$ (or really family of norms) that satisfies the property (11) is said to be *consistent*. Since they are induced norms the two-norm, one-norm, and the ∞ -norm are all consistent. The Frobenius norm also satisfies (11).

An example of a matrix norm that is not *consistent* is given below.

Example 3 Consider the norm $\|\cdot\|_{\beta}$ on $\mathbf{R}^{m\times n}$ given by

$$||X||_{\beta} = \max_{(i,j)} |x_{ij}|.$$

This is simply the ∞ -norm applied to X written out as vector in \mathbf{R}^{mn} . For m=n=2, consider

$$X = Y = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right).$$

Note that

$$XY = \left(\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right)$$

and thus $||XY||_{\beta} = 2 > ||X||_{\beta}||Y||_{\beta} = 1$. Clearly, $||\cdot||_{\beta}$ is not consistent.

Henceforth, we use only consistent norms.

Now we give a numerical example with our four most used norms.

Example 4 Consider

$$X = \left(\begin{array}{ccc} 3 & -2 & 1\\ 10 & 0 & -16\\ -3 & 25 & 1 \end{array}\right).$$

It is easily verified that

$$||X||_1 = 27, \quad \mathbf{y}_1^* = \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$
 $||X||_{\infty} = 29. \quad \mathbf{y}_{\infty}^* = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix},$
 $||X||_F = 31.70, \quad ||X||_2 = 25.46.$

The "magic vector" in the two-norm is (to the digits displayed)

$$\mathbf{y}_2^* = \begin{pmatrix} -0.18943 \\ 0.97256 \\ 0.13508 \end{pmatrix}$$

This will not always be true, but notice that its sign pattern is the same as \mathbf{y}_{∞}^* and that its largest component corresponds to the non-zero component of \mathbf{v}_1^* .