
Lecture # 3
Orthogonal Matrices and Matrix Norms

We repeat the definition an orthogonal set and orthornormal set.

Definition 1 A set of k vectors {u1,u2, . . . ,uk}, where each ui ∈ Rn, is
said to be an orthogonal with respect to the inner product (·, ·) if (ui,uj) = 0
for i ̸= j. The set is said to be orthonormal if it is orthogonal and (ui,ui) = 1
for i = 1, 2, . . . , k

The definition of an orthogonal matrix is related to the definition for
vectors, but with a subtle difference.

Definition 2 The matrix U = (u1,u2, . . . ,uk) ∈ Rn×k whose columns form
an orthonormal set is said to be left orthogonal. If k = n, that is, U is
square, then U is said to be an orthogonal matrix.

Note that the columns of (left) orthogonal matrices are orthonormal,
not merely orthogonal. Square complex matrices whose columns form an
orthonormal set are called unitary.

Example 1 Here are some common 2× 2 orthogonal matrices

U =

(
1 0
0 1

)

U =
√
0.5

(
1 −1
1 1

)

U =

(
0.8 0.6
0.6 −0.8

)

U =

(
cos θ sin θ
− sin θ cos θ

)

Let x ∈ Rn then

∥Ux∥22 = (Ux)T (Ux)

= xTUT Ux

= xT x

= ∥x∥22
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So
∥Ux∥2 = ∥x∥2.

This property is called orthogonal invariance, it is an important and useful
property of the two norm and orthogonal transformations. That is, orthog-
onal transformations DO NOT AFFECT the two-norm, there is no compa-
rable property for the one-norm or ∞-norm.

The Cauchy-Schwarz inequality given below is quite useful for all inner
products.

Lemma 1 (Cauchy-Schwarz inequality) Let (·, ·) be an inner product in
Rn. Then for all x,y ∈ Rn we have

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 . (1)

Moreover, equality in (1) holds if and only if x = αy for some α ∈ R.

In the Euclidean inner product, this is written

|xTy| ≤ ∥x∥2∥y∥2.

This inequality leads to the following definition of the angle between two
vectors relative to an inner product.

Definition 3 The angle θ between the two nonzero vectors x,y ∈ Rn with
respect to an inner product (·, ·) is given by

cos θ =
(x,y)

(x,x)1/2 (y,y)1/2
. (2)

With respect to the Euclidean inner product, this reads

cos θ =
xTy

∥x∥2∥y∥2
.

The one-norm and the ∞-norm share two inequalities similar to the
Cauchy–Schwarz inequality.

|xTy| ≤ ∥x∥1∥y∥∞,

|xTy| ≤ ∥x∥∞∥y∥1,

but these do not lead to any reasonable definition of angle between vectors.
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Example 2

x =

(
1
1

)
, y =

(
−1
3

)
.

We have

∥x∥2 =
√
2, ∥y∥2 =

√
10, xTy = 2

cos θ =
xTy

∥x∥2∥y∥2
=
√
1/5.

Thus
θ = 1.1071R = 63.43◦

is the angle between the two vectors. The three upper bounds on the dot
product are

∥x∥2∥y∥2 =
√
20,

∥x∥1∥y∥∞ = 2 · 3 = 6

∥x∥∞∥y∥1 = 1 · 4 = 4.

It is possible to come up with examples where each of these three is the small-
est bound (or the largest one).

Matrix Norms
We will also need norms for matrices.

Definition 4 A norm in Rm×n is a function ∥ · ∥ mapping
Rm×n into R satisfying the following three axioms

1. ∥X∥ ≥ 0;
∥X∥ = 0 if and only if X = 0, X ∈ Rm×n

2. ∥αX∥ = |α|∥X∥ X ∈ Rm×n, α ∈ R

3. ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥ X, Y ∈ Rm×n.
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This definition is isomorphic to the definition of a vector norm on Rmn.
For example, the Frobenius norm defined by

∥X∥F =

 m∑
i=1

n∑
j=1

x2
ij

1/2

(3)

is isomorphic to the two-norm on Rmn.
Since X represents a linear operator from Rn to Rm, it is appropriate to

define the induced norm ∥ · ∥α on Rm×n by

∥X∥α = sup
y ̸=0

∥Xy∥α
∥y∥α

. (4)

It is a simple matter to show that

∥X∥α = max
∥y∥α=1

∥Xy∥α. (5)

Note that the maximum is taken over a closed, bounded set, thus we have
that

∥X∥α = ∥Xy∗∥α (6)

for some y∗ such that ∥y∗∥α = 1. The above definition leads to the very
useful bound

∥Xy∥α ≤ ∥X∥α∥y∥α (7)

where equality occurs for every vector of the form γy∗, γ ∈ R.
For any induced norm ∥ · ∥, the identity matrix In for Rn×n satisfies

∥In∥ = 1. (8)

However, for the Frobenius norm

∥In∥F =
√
n,

thus it is not an induced norm for any vector norm.
For the one-norm and the ∞-norm there are formulas for the correspond-

ing matrix norms and for a vector y∗ satisfying (6). The one-norm formula
is

∥X∥1 = max
1≤j≤n

m∑
i=1

|xij|. (9)
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If jmax is the index of a column such that

∥X∥1 =
m∑
i=1

|xi,jmax|

then y∗ = ejmax , the corresponding column of the identity matrix.
The ∞-norm formula is

∥X∥∞ = max
1≤i≤m

n∑
j=1

|xij|. (10)

If imax is the index of a row such that

∥X∥∞ =
n∑

j=1

|ximax,j|

then the vector y∗ = (y∗1, . . . , y
∗
n)

T with components

y∗j = sign(ximax,j)

satisfies (6). Note that ∥X∥∞ = ∥XT∥1.
The matrix two-norm does not have a formula like (9) or (10) and all

other formulations are really equivalent to (4). Moreover, computing the
vector y∗ in (6) is a nontrivial task that we will discuss later.

The induced norms have a convenient property that is important in un-
derstanding matrix computations. For X ∈ Rm×n and Y ∈ Rn×s consider
∥XY ∥α. We have that

∥XY ∥α = max
∥z∥α=1

∥XY z∥α ≤ max
∥z∥α=1

∥X∥α∥Y z∥α

= ∥X∥α max
∥z∥α=1

∥Y z∥α = ∥X∥α∥Y ∥α.

Thus
∥XY ∥α ≤ ∥X∥α∥Y ∥α. (11)

A norm ∥ · ∥α (or really family of norms) that satisfies the property (11) is
said to be consistent. Since they are induced norms the two-norm, one-norm,
and the ∞-norm are all consistent. The Frobenius norm also satisfies (11).

An example of a matrix norm that is not consistent is given below.
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Example 3 Consider the norm ∥ · ∥β on Rm×n given by

∥X∥β = max
(i,j)

|xij|.

This is simply the ∞-norm applied to X written out as vector in Rmn. For
m = n = 2, consider

X = Y =

(
1 1
1 1

)
.

Note that

XY =

(
2 2
2 2

)
and thus ∥XY ∥β = 2 > ∥X∥β∥Y ∥β = 1. Clearly, ∥ · ∥β is not consistent.

Henceforth, we use only consistent norms.
Now we give a numerical example with our four most used norms.

Example 4 Consider

X =

 3 −2 1
10 0 −16
−3 25 1

 .

It is easily verified that

∥X∥1 = 27, y∗
1 = e2 =

 0
1
0

 ,

∥X∥∞ = 29. y∗
∞ =

 −1
1
1

 ,

∥X∥F = 31.70, ∥X∥2 = 25.46.

The “magic vector” in the two-norm is (to the digits displayed)

y∗
2 =

 −0.18943
0.97256
0.13508


This will not always be true, but notice that its sign pattern is the same
as y∗

∞ and that its largest component corresponds to the non-zero component
of y∗

1.
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