Lecture # 3
Orthogonal Matrices and Matrix Norms

We repeat the definition an orthogonal set and orthornormal set.

Definition 1 A set of k vectors {uy,uy,...,u,}, where each u; € R", is
said to be an orthogonal with respect to the inner product (-,-) if (u;,u;) =0
fori # j. The set is said to be orthonormal if it is orthogonal and (u;,u;) = 1
fori=1,2,...k

The definition of an orthogonal matrix is related to the definition for
vectors, but with a subtle difference.

Definition 2 The matriz U = (ug, uy, ..., u;) € R™* whose columns form
an orthonormal set is said to be left orthogonal. If k = n, that is, U is
square, then U 1is said to be an orthogonal matriz.

Note that the columns of (left) orthogonal matrices are orthonormal,
not merely orthogonal. Square complex matrices whose columns form an
orthonormal set are called unitary.

Example 1 Here are some common 2 X 2 orthogonal matrices

o (1)

U o Jﬁ(l —1)

1 1
0.8 0.6
v = ( 0.6 —0.8 )
cos 8 sin 60
U = <—sin9 cos@)
Let x € R™ then

1Ux|5 = (Ux)"(Ux)
= x'UTUx



So

1Ux]l2 = Il

This property is called orthogonal invariance, it is an important and useful
property of the two norm and orthogonal transformations. That is, orthog-
onal transformations DO NOT AFFECT the two-norm, there is no compa-
rable property for the one-norm or co-norm.

The Cauchy-Schwarz inequality given below is quite useful for all inner
products.

Lemma 1 (Cauchy-Schwarz inequality) Let (-,-) be an inner product in
R". Then for all x,y € R™ we have

1/2 1/2
e y)l < (%) (y.3)"2 (1)
Moreover, equality in (1) holds if and only if x = ay for some o € R.
In the Euclidean inner product, this is written
X"y | < lIxl2[ly 2.

This inequality leads to the following definition of the angle between two
vectors relative to an inner product.

Definition 3 The angle 6 between the two nonzero vectors x,y € R"™ with
respect to an inner product (-,-) is given by

cos 0 = (x,y) (2)

(x, %) (y,y)"/*

With respect to the Euclidean inner product, this reads
T

cos ==

[1x[]2ly [l

The one-norm and the oo-norm share two inequalities similar to the
Cauchy—Schwarz inequality.

[1x[[1[y oo,
xlloo Iyl

x"y| <
x"y| <

but these do not lead to any reasonable definition of angle between vectors.



Example 2

(1) o (3)

We have
Ix[l2 = v2, |yl = V10, x"y=2
T
cos =~ _ 1/5.
[1x][2][y]2
Thus

0 =1.1071"% = 63.43°

1s the angle between the two vectors. The three upper bounds on the dot
product are

Ix[l2llyllz = V20,
[X[l[[ylle = 2-3=6
[Xlloolly [l = 1-4=4.

It is possible to come up with examples where each of these three is the small-
est bound (or the largest one).

Matrix Norms
We will also need norms for matrices.

Definition 4 A norm in R™™ is a function || - || mapping
R™ ™ into R satisfying the following three axioms

11X = 0;

2. laX]l = lof X X e R™™ a e R
X +Y[ <X+ V] X, ¥ e R™™.



This definition is isomorphic to the definition of a vector norm on R™".
For example, the Frobenius norm defined by

m n 1/2
X = (zzxfj) @

i=1j=1

is isomorphic to the two-norm on R™".
Since X represents a linear operator from R" to R™, it is appropriate to
define the induced norm || - ||, on R™*™ by

|| XYl
1 Xla = (4)
o Tvle

It is a simple matter to show that

Xl = max, Xy 6

Note that the maximum is taken over a closed, bounded set, thus we have
that
[ Xla = [[Xy"a (6)

for some y* such that ||y*||, = 1. The above definition leads to the very
useful bound

[ XY llo < [[X]lallylla (7)
where equality occurs for every vector of the form vy*, v € R.
For any induced norm || - ||, the identity matrix I,, for R™*" satisfies
[ nll = 1. (8)

However, for the Frobenius norm

11u]lr = V/n,

thus it is not an induced norm for any vector norm.

For the one-norm and the co-norm there are formulas for the correspond-
ing matrix norms and for a vector y* satisfying (6). The one-norm formula
is

X1}y = max Z |51 (9)

1<j<n



If Juaz 18 the index of a column such that

m

XN =D 1% s

i=1

then y* = e;, ..., the corresponding column of the identity matrix.
The oo-norm formula is

1Xloo = max > ). (10)

J=1

If 4,42 1s the index of a row such that
n
1 X oo = D [Fian sl
j=1

then the vector y* = (y7,...,y:)T with components

*_

y] Sign(‘rimam,j>

satisfies (6). Note that | X |l = [| X7

The matrix two-norm does not have a formula like (9) or (10) and all
other formulations are really equivalent to (4). Moreover, computing the
vector y* in (6) is a nontrivial task that we will discuss later.

The induced norms have a convenient property that is important in un-
derstanding matrix computations. For X € R"™*" and Y € R"*® consider
| XY ||l. We have that

XY lo = max [[XYz[o < max [[X|a][Yz]a

Jz]la= Izlla=
= [|Xla max [|Yzlla = [ X][a]Y [la-
Jzlla=1

Thus
[ XY o < [[XallY][a- (11)

A norm || - ||, (or really family of norms) that satisfies the property (11) is

said to be consistent. Since they are induced norms the two-norm, one-norm,

and the co-norm are all consistent. The Frobenius norm also satisfies (11).
An example of a matrix norm that is not consistent is given below.



Example 3 Consider the norm | - || on R™*™ given by

| X||s = max |z;].

)

This is simply the co-norm applied to X written out as vector in R™. For

m =n = 2, consider
11
v (1),

2 2
w-(33)

and thus || XYl||g =2 > || X||sllY|lg = 1. Clearly, || - ||s is not consistent.

Note that

Henceforth, we use only consistent norms.
Now we give a numerical example with our four most used norms.

Example 4 Consider

3 =2 1
X=| 10 0 -16
-3 25 1

It is easily verified that
0
I X]p = 27, yi=e=]1/],
0

—1
[ Xlw = 29. yi=| 1 [,
1
X[z = 3170, [X]|.=25.46.

The “magic vector” in the two-norm is (to the digits displayed)

—0.18943
v =| 097256
0.13508

This will not always be true, but notice that its sign pattern is the same
as yi, and that its largest component corresponds to the non-zero component

of yi.



