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3.7 Cyclic designs
Let© = Z;. For® C O, atranslateof ® is a set of the form
©+0={p+6:0c P}

for someB in ®©. Of course® is a translate of itself.

It is possible to haved +6; = ® + 6, even wherB; # 6,. Then® + (01 —
02) = @. Let| be the number of distinct translates®f we shall abuse group-
theoretic terminology slightly and refer taas theindexof ®. Then® + (I mod
t) = @. Moreover,| is the smallest positive integer with this property, ari-
videst (for if not, the remainder on dividingby | is a smaller positive numbér
with @+ (I’ modt) = ®).

Definition An incomplete-block design with treatment &gtis athin cyclic de-
signif there is some subs@? of Z; such that the blocks are all the distinct trans-
lates of®: the design is said to bgeneratedby ®. An incomplete-block design

is acyclicdesign if its blocks can be partitioned into sets of blocks such that each
set is a thin cyclic design.

Example 3.13 Let ® = {0,1,3} C Zg. This has index 8, so it generates the fol-
lowing thin cyclic design.

{0,1,3},{1,2,4},{2,3,5}, {3,4,6}, {4,5,7},{5,6,0},{6,7,1},{7,0,2}. =
Example 3.14 Here is a cyclic design fdfg which is not thin.
{0,1,4},{1,2,5},{2,3,0}, {3,4,1}, {4,5,2}, {5,0,3}, {0,2,4}, {1,3,5}.
The index of{0,1,4} is 6 and the index 0f0,2,4} is2. =
Theorem 3.13 Let® C Z; and let | be the index ab. For 8 in Z, let

Mg(®) = [{(¢P1, ) EPX P — @2 =6},

so that

XoX-o = ) Mo(P)Xe.
6co

Then, in the thin cyclic design generateddy

A@@z%@ﬁ%

and
A(n,¢) =N(0,{—n). (3.7)
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Proof Treatments 0 an@élconcur in the translat®+  if and only if there arep,
@ in ® such thatp + P =06 and@p + P =0, thatisp = —@ andd = ¢ — @. If
| =t then/A\(0,8) = mg(®P). In general, the family of se®, ®+1,..., ¢+t -1
consists ot /I copies of thd distinct translatesp, ®+1, ..., ® 41 —1, so the
concurrence in the thin design(is/t)mg(®).

Moreover, treatments 0 ardconcur in® + Y if and only if treatments) and
n+ 6 concur in®+Y+n, soA(0,0) =A(n,n+6). =

Corollary 3.14 Every cyclic design is partially balanced with respect to the cyclic
association scheme df; defined by the blueprinf0}, {£1}, {£2}, .... (It

may be partially balanced with respect to a cyclic association scheme with fewer
associate classes.)

Proof Since Equation (3.7) holds in each thin component of the design, it holds
overall, and
A= 2@/\(0, 8)Mg,
8

where 2 5
_J1 if{—n=
Mo(n.¢) = {O otherwise,

as in Section 1.4.5. Buk is symmetric, so\(0,—8) = A(—6,0) = A(0,8), by
Equation (3.7). The adjacency matrices for the cyclic association scheme defined
by the blueprin{0}, {£1}, {£2} ... are(Mg+ M_g) if 20 £ 0 andMg if 20 =
0, soA is a linear combination of the adjacency matrices, and so the design is
partially balanced with respect to this association scheme.

Suppose thahg, A, ..., Asis a blueprint forZ; such that\(0,0) is constant
Ai for 6in Aj. PuttingAj = Scp, Mg gives A = 3 AjA;, and so the design is
partially balanced with respect to the cyclic association scheme defined by the
blueprint. =

Now write Ag for A(0, 8).

Technique 3.8 To calculate the concurrences in the thin design generate®l by
form thetable of differencefor ®. Try to find the coarsest blueprint such that
is constant on each set in the partition.

Example 3.13 revisited In Zg, the block{0, 1,3} gives the following table of

differences.
0(1]|3

00 3
17
3|5

| Ol

2
0
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Thereforehg = 3,A\1 = A2 = A3 =A5 = Ag = A7 =1 andA4 = 0. Hence the design
is partially balanced for the association scheme defined by the blu¢ptint4},
{1,2,3,5,6,7} (so this design is group divisible with groups4d| 1,5 ||,2,6 ||
3,7). =

Definition A subset® of Z; is aperfect difference sdor Z; if there are integers
r, A such that

XoX—o = Xo+A(Xz — Xo);
in other wordsmg(®) = A for all 6 with 8 # 0.

Proposition 3.15 The thin cyclic design generated Byis balanced if and only
if @ is a perfect difference set.

Example 3.5 revisited The subse{1,2,4} is a perfect difference set f@t;.

1124

1/0(1|3
21602
414150

Its table of differences contains every non-zero elemefit;axactly once. m

Theorem 3.16 The canonical efficiency factors of a cyclic design are

1
1—— )\er]e
rk GEZZt

for complex t-th roots of unityg with n # 1.
Proof Use Theorems 3.12 and 2.18=

Technique 3.9 Let( = exp(ZT"i). Thenn is a complex-th root of unity if there is

an integem such than = (™. To calculate canonical efficiency factors of cyclic
designs numerically, replacg +n~8 by 2 cos(Z®™). To calculate the harmonic
mean efficiency factoA as an exact rational number, leave everything in powers
of .

Example 3.15 Consider the thin cyclic design generated{By1, 3,7} in Zg.

|0]1]3]7
0[1]37

N W | O

8(0|2|6
67|04
2/3/5|0
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Thus the eigenvalues déf are
4+M+n"H+20*+n"9)+2(n*+n"°)+(n+n"?

wheren® = 1. If n® =1 andn # 1 thenn +n~1 = —1 (the cube roots of unity
sum to zero) so the eigenvalue is

4-1-2+4+4-1=4;

otherwise itis
4+n°+n"?-2=2+n°+n"%

because the primitive ninth roots of unity sum to zero (because all the ninth roots
do). Let be a fixed primitive ninth root of unity, and pxt=+7 1, y=0%+7"2
andz= %+ Z*. Then the canonical efficiency factors are

3 14-x 14-y 14—z

4’ 16 ’ 16 ’ 16 ’

all with multiplicity 2.
Substitutingk = 2c0s40, y = 2¢0s80, z= 2cos 160 gives

0.750Q 0.7792 0.8533 and ®925

to 4 decimal places, andl= 0.8340.
To do the exact calculation, we note first thkat y+z= 0. Then

xy = @+THE+?)
= (+3+0%+!
= x—1,

and similarlyyz=y—1 andzx=z— 1. Thereforxy+yz+zx=x+y+z—3= -3
andxyz= (x—1)z=xz—z=z—1-z=-1.

Now

1 1 1
1a—x " 14—y T4—x
(14—x)(14—y)+ (14— x)(14—2) + (14— y)(14—2)
(14—x)(14—vy)(14—-2)

3. 142 — 28(X+Yy+2) + (Xy-+Yyz+zX)
143 — 182(X+y+2) + 14(Xy+ yz+zX) — Xyz

3-144-3 195
143-3-14+1 901
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SO

4 16x195
AL = D T O
3" 901
SO
Al }+4>< 195 3241
~3' 901 2703
and

2703
- 3241



